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Appendix A 
Probable Maximum Precipitation (PMP) Maps  
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Local Storms 
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Cool Season Storms 
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Appendix B 
Geographic Transposition Factor (GTF) Maps 
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Local Storms
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Cool Season Storms 
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Appendix C 
100-year Return Frequency Maximum Average Dew Point 

Temperature Climatology Maps  
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6-hour 1000mb Dew Point Maps 
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12-hour 1000mb Dew Point Maps 
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24-hour 1000mb Dew Point Maps  
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Appendix D 
Precipitation Frequency Update Additional Data  
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The overall PMP domain covers the entire state of North Dakota as well as portions of four 

adjacent states and two Canadian provinces.  Figure 1.1 shows the PMP analysis domain for the 

state of North Dakota.  When calculating the adjustment factors for the PMP analysis, 6- and 24-

hour precipitation frequency estimates are used to calculate the GTF.  To complete these 

calculations a consistent precipitation frequency climatology is needed.  NOAA Atlas 14 

precipitation frequency depths are not available for Montana, Wyoming, Saskatchewan, and 

Manitoba.  Therefore, an updated precipitation frequency climatology was required for these 

locations that could be combined with the NOAA Atlas 14 data.  A new set of 6- and 24-hour 

precipitation frequency datasets were created during this study and merged with the existing 

NOAA Atlas 14 datasets to create a seamless precipitation frequency dataset for the entire 

analysis domain. Figure 1.2 shows the NOAA Atlas 14 depths over the North Dakota PMP 

domain.   

 

 

Figure 1.1:  PMP analysis domain for North Dakota 
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Figure 1.2:  24-Hour 100-Year NOAA Atlas 14 precipitation frequency estimates over the PMP domain 

 

Regional Frequency Analyses Methods 

Regional precipitation frequency analysis was conducted for the North Dakota domain to 

provide precipitation frequency estimates for application in GTF, PMP, and hydrologic 

modeling.  Precipitation frequency estimates were created for two durations (6-hour, and 24-

hour) and ten frequencies (1-, 2-, 5-, 10-, 25-, 50-, 100-, 200-, 500-, and 1000-year). Hourly (94 

stations) and daily (286 stations) station data were extracted for the two durations from 

Environment Canada and the National Weather Service (NWS).  This initial regional analysis 

used two climatic regions and tested for homogeneity, i.e. if regions are homogenous they 

statistically represent similar meteorology and can be modeled based on the same regional 

probability distribution "Regional Growth Curve".  Hosking and Wallis (1997) developed 

heterogeneity measures to help indicate the level of heterogeneity or homogeneity in the L-

moment ratios for a group of stations representing a sub-region.  The statistics H1 (heterogeneity 

measure) and H2 denote the relative variability of observed L-Cv and L-Skewness respectively 

for stations within a sub-region.  As suggested in Hosking and Wallis (1997), adjustments of 

regions, such as moving stations from one region to another or subdividing a region, were made 

to reduce heterogeneity.   
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The heterogeneity measure, H1, tests between-site variations in sample L-moments for a 

group of sites with what would be expected for a homogeneous region based on coefficient of L-

variation (Hosking and Wallis, 1997).  Earlier studies (Hosking and Wallis, 1997 and Bonnin et 

al., 2004) indicated that a threshold of 2 is conservative and Schaefer et al., (2006) indicated that 

a threshold of 3.0 is conservative.  For the North Dakota project a H1 threshold of 2.0 was used 

to identify homogeneity.  The initial climatic two regions contained enough data to perform 

reliable homogeneity tests, with the H1 statistics for the two durations having homogeneity (H < 

2).   

 

L-moments statistics using R-statistical software packages lmom and lmomRFA 

developed by Hosking (Hosking, 2015a, and Hosking 2015b) were used.  L-moment statistics are 

used for computing sample statistics for data at individual sites; for testing for 

homogeneity/heterogeneity of proposed groupings of sites (regions); for conducting goodness-

of-fit tests for identifying a suitable probability distribution(s); and for solving for distribution 

parameters for the selected probability distribution. L-moments obtain their name from their 

construction as linear combinations of order statistics (Hosking and Wallis, 1997).   

 

L-moment statistics are a significant improvement over conventional product moment 

statistics for characterizing the shape of a probability distribution and estimating the distribution 

parameters, particularly for environmental data where sample sizes are commonly small. Unlike 

product moments, the sampling properties for L-moments statistics are nearly unbiased, even in 

small samples, and are near normally distributed.  These properties make them well suited for 

characterizing environmental data that commonly exhibit moderate to high skewness.  The L-

moment measure of location, and L-moment ratio measures of scale, skewness, and kurtosis are 

calculated based on Hosking and Wallis (1997).  Goodness-of-fit measures were evaluated for 

five candidate distributions: generalized logistic (GLO), generalized extreme value (GEV), 

generalized normal (GNO), Pearson type III (PE3), and generalized Pareto (GPA).  An L-

Moment Ratio Diagram was prepared for each duration based on L-Skewness and L-Kurtosis 

pairs for the stations used.  

 

 The regional weighted-average L-Skewness and L-Kurtosis pairing found the GEV, , and 

GNO distributions to be the most frequent distributions that were statistically significant based 

on goodness-of-fit test.  The GEV distribution was statistically significant for all durations (1st), 

whereas the GNO distribution was also significant.  Based on the goodness-of-fit statistics and 

summary data, the GEV distribution was selected for derivation of the precipitation AEPs. 

 

 The GEV is a general mathematical form that incorporates Gumbel’s Extreme Value 

(EV) type I, II, and III distributions for maxima.  The parameters of the GEV distribution are the 

ξ (location), α (scale), and k (shape).  The Gumbel EV type I distribution is obtained when k = 0.  

For k > 0, the distribution has finite upper bound at ξ + α /k and corresponds to the EV type III 

distribution for maxima that are bounded above.  For k < 0, this corresponds to the Gumbel EV 

type II distribution.  

 

Utilizing regional methods described in Hosking and Wallis (1997) together with quality-

controlled annual maximum precipitation values extracted for stations within each region, 
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regional L-moment statistics were computed and applied to derive precipitation frequency 

estimates.  Consistent with methodologies used in United States Precipitation Frequency 

climatology (NOAA Atlas 14, Bonnin et al., 2004; Perica et al., 2013), the station precipitation 

frequency estimates were spatially interpolated utilizing a climatologically-aided interpolation 

approach.   

   

 

Figure 1.3:  24-Hour 100-Year precipitation frequency estimates created 

 

Since the NOAA Atlas 14 and North Dakota frequency datasets were completed independently 

from each other small inconsistencies occurred along the border.  The goal was to leave the 

NOAA Atlas 14 depths unchanged and to seamlessly merge the two datasets together.  To 

accomplish this, the newly created precipitation frequency dataset was clipped back 15 miles 

outside of the boundary of the NOAA Atlas 14 domain.  The NOAA 14 depths were left as is.  

Figure 1.4 shows the clipped area and both datasets ready to merge.  
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Figure 1.4:  Area to be interpolated between datasets 

 

At this point, one tenth of an inch contours were created for both datasets.  A GIS interpolation 

method was used to fill in the fifteen-mile buffer zone between the two datasets.  This resulted in 

a seamless dataset with the buffer area filled in with little to no changes to the existing datasets.  

Figure 1.5 shows the final 6-hour 100-year precipitation and Figure 1.6 show the final 24-hour 

100-year precipitation frequency estimates used for the GTF calculations.  
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Figure 1.5:  Final 6-Hour 100-Year precipitation frequency estimates over the North Dakota PMP domain 
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Figure 1.6:  Final 24-Hour 100-Year precipitation frequency estimates over the North Dakota PMP domain 
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Appendix E 
Storm Precipitation Analysis System (SPAS) 

Description   
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Introduction 

 
The Storm Precipitation Analysis System (SPAS) is grounded on years of scientific research 

with a demonstrated reliability in hundreds of post-storm precipitation analyses.  It has evolved 

into a trusted hydrometeorological tool that provides accurate precipitation data at a high spatial 

and temporal resolution for use in a variety of sensitive hydrologic applications (Faulkner et al., 

2004, Tomlinson et al., 2003-2012).  Applied Weather Associates, LLC and METSTAT, Inc. 

initially developed SPAS in 2002 for use in producing Depth-Area-Duration values for Probable 

Maximum Precipitation (PMP) analyses.  SPAS utilizes precipitation gauge data, basemaps and 

radar data (when available) to produce gridded precipitation at time intervals as short as 5 

minutes, at spatial scales as fine as 1 km2 and in a variety of customizable formats.  To date 

(March 2015 SPAS has been used to analyze over 500 storm centers across all types of terrain, 

among highly varied meteorological settings and some occurring over 100-years ago. 

 

SPAS output has many applications including, but not limited to: hydrologic model 

calibration/validation, flood event reconstruction, storm water runoff analysis, forensic cases and 

PMP studies.  Detailed SPAS-computed precipitation data allow hydrologists to accurately 

model runoff from basins, particularly when the precipitation is unevenly distributed over the 

drainage basin or when rain gauge data are limited or not available.  The increased spatial and 

temporal accuracy of precipitation estimates has eliminated the need for commonly made 

assumptions about precipitation characteristics (such as uniform precipitation over a watershed), 

thereby greatly improving the precision and reliability of hydrologic analyses. 

 

To instill consistency in SPAS analyses, many of the core methods have remained consistent 

from the beginning.  However, SPAS is constantly evolving and improving through new 

scientific advancements and as new data and improvements are incorporated.  This write-up 

describes the current inner-workings of SPAS, but the reader should realize SPAS can be 

customized on a case-by-case basis to account for special circumstances; these adaptations are 

documented and included in the deliverables.  The over-arching goal of SPAS is to combine the 

strengths of rain gauge data and radar data (when available) to provide sound, reliable and 

accurate spatial precipitation data. 

 

Hourly precipitation observations are generally limited to a small number of locations, with 

many basins lacking observational precipitation data entirely.  However, Next Generation Radar 

(NEXRAD) data provide valuable spatial and temporal information over data-sparse basins, 

which have historically lacked reliability for determining precipitation rates and reliable 

quantitative precipitation estimates (QPE).  The improved reliability in SPAS is made possible 

by hourly calibration of the NEXRAD radar-precipitation relationship, combined with local 

hourly bias adjustments to force consistency between the final result and “ground truth” 

precipitation measurements.  If NEXRAD radar data are available (generally for storm events 

since the mid-1990s), precipitation accumulation at temporal scales as frequent as 5-minutes can 

be analyzed.  If no NEXRAD data are available, then precipitation data are analyzed in hourly 

increments.  A summary of the general SPAS processes is shown in flow chart in Figure E.1. 
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Figure E.1:  SPAS flow chart 

Setup 
Prior to a SPAS analysis, careful definition of the storm analysis domain and time frame to be 

analyzed is established.  Several considerations are made to ensure the domain (longitude-

latitude box) and time frame are sufficient for the given application. 

SPAS Analysis Domain 
For PMP applications it is important to establish an analysis domain that completely 

encompasses a storm center, meanwhile hydrologic modeling applications are more concerned 

about a specific basin, watershed or catchment.  If radar data are available, then it is also 

important to establish an area large enough to encompass enough stations (minimum of ~30) to 

adequately derive reliable radar-precipitation intensity relationships (discussed later).  The 

domain is defined by evaluating existing documentation on the storm as well as plotting and 

evaluating initial precipitation gauge data on a map.  The analysis domain is defined to include 

as many hourly recording gauges as possible given their importance in timing.  The domain must 

include enough of a buffer to accurately model the nested domain of interest.  The domain is 

defined as a longitude-latitude (upper left and lower right corner) rectangular region. 

SPAS Analysis Time Frame 
Ideally, the analysis time frame, also referred to as the Storm Precipitation Period (SPP), will 

extend from a dry period through the target wet period then back into another dry period.  This is 

to ensure that total storm precipitation amounts can be confidently associated with the storm in 

question and not contaminated by adjacent wet periods.  If this is not possible, a reasonable time 
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period is selected that is bounded by relatively lighter precipitation.  The time frame of the 

hourly data must be sufficient to capture the full range of daily gauge observational periods for 

the daily observations to be disaggregated into estimated incremental hourly values (discussed 

later).  For example, if a daily gauge takes observations at 8:00 AM, then the hourly data must be 

available from 8:00 AM the day prior.  Given the configuration of SPAS, the minimum SPP is 

72 hours and aligns midnight to midnight. 

The core precipitation period (CPP) is a sub-set of the SPP and represents the time period with 

the most precipitation and the greatest number of reporting gauges.  The CPP represents the time 

period of interest and where our confidence in the results is highest. 

Data 
The foundation of a SPAS analysis is the “ground truth” precipitation measurements.  In fact, the 

level of effort involved in “data mining” and quality control represent over half of the total level 

of effort needed to conduct a complete storm analysis.  SPAS operates with three primary data 

sets: precipitation gauge data, a basemap and, if available, radar data.  Table E.1 conveys the 

variety of precipitation gauges usable by SPAS.  For each gauge, the following elements are 

gathered, entered and archived into SPAS database: 

• Station ID 

• Station name 

• Station type (H=hourly, D=Daily, S=Supplemental, etc.) 

• Longitude in decimal degrees 

• Latitude in decimal degrees 

• Elevation in feet above MSL 

• Observed precipitation 

• Observation times 

• Source 

• If unofficial, the measurement equipment and/or method is also noted. 

Based on the SPP and analysis domain, hourly and daily precipitation gauge data are extracted 

from our in-house database as well as the Meteorological Assimilation Data Ingest System 

(MADIS).  Our in-house database contains data dating back to the late 1800s, while the MADIS 

system (described below) contains archived data back to 2002. 

Hourly Precipitation Data 
Our hourly precipitation database is largely comprised of data from NCDC TD-3240, but also 

precipitation data from other mesonets and meteorological networks (e.g., ALERT, Flood 

Control Districts, etc.) that we have collected and archived as part of previous studies.  

Meanwhile, MADIS provides data from a large number of networks across the U.S., including 

NOAA’s HADS (Hydrometeorological Automated Data System), numerous mesonets, the 

Citizen Weather Observers Program (CWOP), departments of transportation, etc. (see 

http://madis.noaa.gov/mesonet_providers.html for a list of providers).  Although our automatic 

data extraction is fast, cost-effective and efficient, it never captures all of the available 

precipitation data for a storm event.  For this reason, a thorough “data mining” effort is 

undertaken to acquire all available data from sources such as U.S. Geological Survey (USGS), 

Remote Automated Weather Stations (RAWS), Community Collaborative Rain, Hail & Snow 

Network (CoCoRaHS), National Atmospheric Deposition Program (NADP), Clean Air Status 
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and Trends Network (CASTNET), local observer networks, Climate Reference Network (CRN), 

Global Summary of the Day (GSD) and Soil Climate Analysis Network (SCAN).  Unofficial 

hourly precipitation data are gathered to give guidance on either timing or magnitude in areas 

otherwise void of precipitation data.  The WeatherUnderground and MesoWest, two of the 

largest weather databases on the Internet, contain a large proportion of official data, but also 

includes data from unofficial gauges. 

Table E.1: Different precipitation gauge types used by SPAS 

Precipitation Gauge Type Description 

Hourly Hourly gauges with complete, or nearly complete, incremental hourly 

precipitation data. 

Hourly estimated Hourly gauges with some estimated hourly values, but otherwise reliable. 

Hourly pseudo Hourly gauges with reliable temporal precipitation data, but the magnitude is 

questionable in relation to co-located daily or supplemental gauge. 

Daily Daily gauge with complete data and known observation times. 

Daily estimated Daily gauges with some or all estimated data. 

Supplemental Gauges with unknown or irregular observation times, but reliable total storm 

precipitation data. (E.g. public reports, storms reports, “Bucket surveys”, etc.) 

Supplemental estimated Gauges with estimated total storm precipitation values based on other information 

(e.g. newspaper articles, stream flow discharge, inferences from nearby gauges, 

pre-existing total storm isohyetal maps, etc.) 

Daily Precipitation Data 
Our daily database is largely based on NCDC’s TD-3206 (pre-1948) and TD-3200 (1948 through 

present) as well as SNOTEL data from NRCS.  Since the late 1990s, the CoCoRaHS network of 

more than 15,000 observers in the U.S. has become a very important daily precipitation source.  

Other daily data are gathered from similar, but smaller gauge networks, for instance the High 

Spatial Density Precipitation Network in Minnesota. 

 

As part of the daily data extraction process, the time of observation accompanies each measured 

precipitation value.  Accurate observation times are necessary for SPAS to disaggregate the daily 

precipitation into estimated incremental values (discussed later).  Knowing the observation time 

also allows SPAS to maintain precipitation amounts within given time bounds, thereby retaining 

known precipitation intensities.  Given the importance of observation times, efforts are taken to 

mase sure the observation times are accurate.  Hardcopy reports of “Climatological Data,” 

scanned observational forms (available on-line from the NCDC) and/or gauge metadata forms 

have proven to be valuable and accurate resources for validating observation times.  

Furthermore, erroneous observation times are identified in the mass-curve quality-control 

procedure (discussed later) and can be corrected at that point in the process. 

Supplemental Precipitation Gauge Data 
For gauges with unknown or irregular observation times, the gauge is considered a 

“supplemental” gauge.  A supplemental gauge can either be added to the storm database with a 

storm total and the associated SPP as the temporal bounds or as a gauge with the known, but 

irregular observation times and associated precipitation amounts.  For instance, if all that is 

known is 3 inches fell between 0800-0900, then that information can be entered.  Gauges or 

reports with nothing more than a storm total are often abundant, but to use them, it is important 
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the precipitation is only from the storm period in question.  Therefore, it is ideal to have the 

analysis time frame bounded by dry periods. 

 

Perhaps the most important source of data, if available, is from “bucket surveys,” which provide 

comprehensive lists of precipitation measurements collected during a post-storm field exercise.  

Although some bucket survey amounts are not from conventional precipitation gauges, they 

provide important information, especially in areas lacking data.  Particularly for PMP-storm 

analysis applications, it is customary to accept extreme, but valid non-standard precipitation 

values (such as bottles and other open containers that catch rainfall) to capture the highest 

precipitation values. 

Basemap 
“Basemaps” are independent grids of spatially distributed weather or climate variables that are 

used to govern the spatial patterns of the hourly precipitation.  The basemap also governs the 

spatial resolution of the final SPAS grids unless radar data are available/used to govern the 

spatial resolution.  Note that a base map is not required as the hourly precipitation patterns can be 

based on station characteristics and an inverse distance weighting technique (discussed later).  

Basemaps in complex terrain are often based on the PRISM mean monthly precipitation (Figure 

E.2a) or Hydrometeorological Design Studies Center precipitation frequency grids (Figure E.2b) 

given they resolve orographic enhancement areas and micro-climates at a spatial resolution of 

30-seconds (about 800 m).  Basemaps of this nature in flat terrain are not as effective given the 

small terrain forced precipitation gradients.  Therefore, basemaps for SPAS analyses in flat 

terrain are often developed from pre-existing (hand-drawn) isohyetal patterns (Figure E.2c), 

composite radar imagery or a blend of both. 

a) b) c)  

Figure E.2:  Sample SPAS “basemaps:” (a) A pre-existing (USGS) isohyetal pattern across flat terrain (SPAS 

#1209), (b) PRISM mean monthly (October) precipitation (SPAS #1192) and (c) A 100-year 24-hour precipitation 

grid from NOAA Atlas 14 (SPAS #1138) 

Radar Data 
For storms occurring since approximately the mid-1990s, weather radar data are available to 

supplement the SPAS analysis.  A fundamental requirement for high quality radar-estimated 

precipitation is a high quality radar mosaic, which is a seamless collection of concurrent weather 

radar data from individual radar sites, however in some cases a single radar is sufficient (i.e. for a 

small area size storm event such as a thunderstorm).  Weather radar data have been in use by 

meteorologists since the 1960s to estimate precipitation depths, but it was not until the early 

1990s that new, more accurate NEXRAD Doppler radar (WSR88D) was placed into service 

across the United States. Currently, efforts are underway to convert the WSR88D radars to dual 
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polarization (DualPol) radar.  Today, NEXRAD radar coverage of the contiguous United States 

is comprised of 159 operational sites and there are 30 in Canada.  Each U.S. radar covers an 

approximate 285 mile (460 km) radial extent while Canadian radars have approximately 256 km 

(138 nautical miles) radial extent over which their radar can detect precipitation (see Figure E.3).  

The primary vendor of NEXRAD weather radar data for SPAS is Weather Decision 

Technologies, Inc. (WDT), who accesses, mosaics, archives and quality-controls NEXRAD 

radar data from NOAA and Environment Canada.  SPAS utilizes Level II NEXRAD radar 

reflectivity data in units of dBZ, available every 5-minutes in the U.S. and 10-minutes in Canada. 

 

Figure E.3:  U.S. radar locations and their radial extents of coverage below 10,000 feet above ground level (AGL).  

Each U.S. radar covers an approximate 285 mile radial extent over which the radar can detect precipitation. 

The WDT and National Severe Storms Lab (NSSL) Radar Data Quality Control Algorithm 

(RDQC) removes non-precipitation artifacts from base Level–II radar data and remaps the data 

from polar coordinates to a Cartesian (latitude/longitude) grid.  Non-precipitation artifacts 

include ground clutter, bright banding, sea clutter, anomalous propagation, sun strobes, clear air 

returns, chaff, biological targets, and electronic interference and hardware test patterns. The 

RDQC algorithm uses sophisticated data processing and a Quality Control Neural Network 

(QCNN) to delineate the precipitation echoes caused by radar artifacts (Lakshmanan and Valente 

2004).  Beam blockages due to terrain are mitigated by using 30-meter DEM data to compute 

and then discard data from a radar beam that clears the ground by less than 50 meters and incurs 

more than 50% power blockage.  A clear-air echo removal scheme is applied to radars in clear-

air mode when there is no precipitation reported from observation gauges within the vicinity of 

the radar.  In areas of radar coverage overlap, a distance weighting scheme is applied to assign 

reflectivity to each grid cell, for multiple vertical levels.  This scheme is applied to data from the 

nearest radar that is unblocked by terrain. 
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Once data from individual radars have passed through the RDQC, they are merged to create a 

seamless mosaic for the United States and southern Canada as shown in Figure E.4.  A multi-

sensor quality control can be applied by post-processing the mosaic to remove any remaining 

“false echoes.”  This technique uses observations of infra-red cloud top temperatures by GOES 

satellite and surface temperature to create a precipitation/no-precipitation mask.  Figure E.4(b) 

shows the impact of WDT’s quality control measures.  Upon completing all QC, WDT converts 

the radar data from its native polar coordinate projection (1 degree x 1.0 km) into a longitude-

latitude Cartesian grid (based on the WGS84 datum), at a spatial resolution of ~1/3rdmi2 for 

processing in SPAS. 

a)    b)  

Figure E.4:  (a) Level-II radar mosaic of CONUS radar with no quality control, (b) WDT quality controlled Level-

II radar mosaic 

SPAS conducts further QC on the radar mosaic by infilling areas contaminated by beam 

blockages.  Beam blocked areas are objectively determined by evaluating total storm reflectivity 

grid which naturally amplifies areas of the SPAS analysis domain suffering from beam blockage 

as shown in Figure E.5. 

a)  b)  

Figure E.5:  Illustration of SPAS-beam blockage infilling where (a) is raw, blocked radar and (b) is filled for a 42-

hour storm event 
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Methodology 

Daily and Supplemental Precipitation to Hourly 
To obtain one hour temporal resolutions and utilize all gauge data, it is necessary to disaggregate 

daily and supplemental precipitation observations into estimated hourly amounts.  This process 

has traditionally been accomplished by distributing (temporally) the precipitation at each 

daily/supplemental gauge in accordance to a single nearby hourly gauge (Thiessen polygon 

approach).  However, this may introduce biases and not correctly represent hourly precipitation 

at daily/supplemental gauges situated in-between hourly gauges.  Instead, SPAS uses a spatial 

approach by which the estimated hourly precipitation at each daily and supplemental gauge is 

governed by a distance weighted algorithm of all nearby true hourly gauges. 

 

To disaggregate (i.e., distribute) daily/supplemental gauge data into estimate hourly values, the 

true hourly gauge data are first evaluated, and quality controlled using synoptic maps, nearby 

gauges, orographic effects, gauge history and other documentation on the storm.  Any problems 

with the hourly data are resolved, and when possible/necessary accumulated hourly values are 

distributed.  If an hourly value is missing, the analyst can choose to either estimate it or leave it 

missing for SPAS to estimate later based on nearby hourly gauges.  At this point in the process, 

pseudo (hourly) gauges can be added to represent precipitation timing in topographically 

complex locations, areas with limited/no hourly data or to capture localized convention.  Hourly 

Pseudo stations add additional detail on the timing of rainfall, either from COOP forms, radar 

reflectivity timing, and/or bucket survey reports with time increments.  Hourly Pseudo stations 

are used only for the timing surrounding daily and supplemental stations and not for the 

magnitude.  The limitations of Hourly Pseudo stations are that they are based on surrogate 

information, the quality of the information can be highly questionable (based on source) thus the 

importance of the station QC procedures are extremely important. To adequately capture the 

temporal variations of the precipitation, a pseudo hourly gauge is sometimes necessary.  A 

pseudo gauge is created by distributing the precipitation at a co-located daily gauge or by 

creating a completely new pseudo gauge from other information such as inferences from COOP 

observation forms, METAR visibility data (if hourly precipitation is not already available), 

lightning data, satellite data, or radar data.  Often radar data are the best/only choice for creating 

pseudo hourly gauges, but this is done cautiously given the potential differences (over-shooting 

of the radar beam equating to erroneous precipitation) between radar data and precipitation.  In 

any case, the pseudo hourly gauge is flagged so SPAS only uses it for timing and not magnitude.  

Care is taken to ensure hourly pseudo gauges represent justifiably important physical and 

meteorological characteristics before being incorporated into the SPAS database.  Although 

pseudo gauges provide a very important role, their use is kept to a minimum.  The importance of 

having accurate reliability of every hourly gauge cannot be over emphasized.  All of the final 

hourly gauge data, including pseudos, are included in the hourly SPAS precipitation database. 

 

Using the hourly SPAS precipitation database, each hourly precipitation value is converted into a 

percentage that represents the incremental hourly precipitation divided by the total SPP 

precipitation.  The GIS-ready x-y-z file is constructed for each hour and it includes the latitude 

(x), longitude(y) and the percent of precipitation (z) for a particular hour.  Using the GRASS 

GIS, an inverse-distance-weighting squared (IDW) interpolation technique is applied to each of 

the hourly files.  The result is a continuous grid with percentage values for the entire analysis 
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domain, keeping the grid cells on which the hourly gauge resides faithful to the observed/actual 

percentage.  Since the percentages typically have a high degree of spatial autocorrelation, the 

spatial interpolation has skill in determining the percentages between gauges, especially since the 

percentages are somewhat independent of the precipitation magnitude.  The end result is a GIS 

grid for each hour that represents the percentage of the SPP precipitation that fell during that 

hour. 

 

After the hourly percentage grids are generated and QC’d for the entire SPP, a program is 

executed that converts the daily/supplemental gauge data into incremental hourly data.  The 

timing at each of the daily/supplemental gauges is based on (1) the daily/supplemental gauge 

observation time, (2) daily/supplemental precipitation amount and (3) the series of interpolated 

hourly percentages extracted from grids (described above). 

 

This procedure is detailed in Figure E.6 below.  In this example, a supplemental gauge reported 

1.40" of precipitation during the storm event and is located equal distance from the three 

surrounding hourly recording gauges.  The procedure steps are: 

 

Step 1. For each hour, extract the percent of SPP from the hourly gauge-based percentage at the 

location of the daily/supplemental gauge. In this example, assume these values are the 

average of all the hourly gauges. 

Step 2. Multiply the individual hourly percentages by the total storm precipitation at the 

daily/supplemental gauge to arrive at estimated hourly precipitation at the 

daily/supplemental gauge. To make the daily/supplemental accumulated precipitation 

data faithful to the daily/supplemental observations, it is sometimes necessary to adjust 

the hourly percentages so they add up to 100% and account for 100% of the daily 

observed precipitation. 

 

Figure E.6:  Example of disaggregation of daily precipitation into estimated hourly precipitation based on three (3) 

surrounding hourly recording gauges 

In cases where the hourly grids do not indicate any precipitation falling during the 

daily/supplemental gauge observational period, yet the daily/supplemental gauge reported 
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precipitation, the daily/supplemental total precipitation is evenly distributed throughout the hours 

that make up the observational period; although this does not happen very often, this solution is 

consistent with NWS procedures.  However, the SPAS analyst is notified of these cases in a 

comprehensive log file, and in most cases, they are resolvable, sometimes with a pseudo hourly 

gauge. 

Gauge Quality Control 
Exhaustive quality control measures are taken throughout the SPAS analysis.  Below are a few of 

the most significant QC measures taken. 

Mass Curve Check 
A mass curve-based QC-methodology is used to ensure the timing of precipitation at all gauges 

is consistent with nearby gauges.  SPAS groups each gauge with the nearest four gauges 

(regardless of type) into a single file.  These files are subsequently used in software for graphing 

and evaluation.  Unusual characteristics in the mass curve are investigated and the gauge data 

corrected, if possible and warranted.  See Figure E.7 for an example. 

 

Figure E.7:  Sample mass curve plot depicting a precipitation gauge with an erroneous observation time (red line).  

X-axis is the SPAS index hour and the y-axis is inches.  The statistics in the upper left denote gauge type, and 

distance from target gauge (in km).  In this example, the daily gauge (red line) was found to have an observation 

error/shift of 6-hours. 

Gauge Mis-location Check 
Although the gauge elevation is not explicitly used in SPAS, it is however used as a means of 

QC’ing gauge location.  Gauge elevations are compared to a high-resolution 15-second DEM to 

identify gauges with large differences, which may indicate erroneous longitude and/or latitude 

values. 
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Co-located Gauge QC 
Care is also taken to establish the most accurate precipitation depths at all co-located gauges.  In 

general, where a co-located gauge pair exists, the highest precipitation is accepted (if deemed 

accurate).  If the hourly gauge reports higher precipitation, then the co-located daily (or 

supplemental) is removed from the analysis since it would not add anything to the analysis.  

Often daily (or supplemental) gauges report greater precipitation than a co-located hourly station 

since hourly tipping bucket gauges tend to suffer from gauge under-catch, particularly during 

extreme events, due to loss of precipitation during tips.  In these cases, the daily/supplemental is 

retained for the magnitude and the hourly used as a pseudo hourly gauge for timing.  Large 

discrepancies between any co-located gauges are investigated and resolved since SPAS can only 

utilize a single gauge magnitude at each co-located site. 

Spatial Interpolation 
At this point the QC’d observed hourly and disaggregated daily/supplemental hourly 

precipitation data are spatially interpolated into hourly precipitation grids.  SPAS has three 

options for conducting the hourly precipitation interpolation, depending on the terrain and 

availability of radar data, thereby allowing SPAS to be optimized for any particular storm type or 

location.  Figure E.8 depicts the results of each spatial interpolation methodology based on the 

same precipitation gauge data. 

a)  b) c)  

Figure E.8:  Depictions of total storm precipitation based on the three SPAS interpolation methodologies for a 

storm (SPAS #1177, Vanguard, Canada) across flat terrain: (a) no basemap, (b) basemap-aided and (c) radar 

Basic Approach 
The basic approach interpolates the hourly precipitation point values to a grid using an inverse 

distance weighting squared GIS algorithm.  This is sometimes the best choice for convective 

storms over flat terrain when radar data are not available, yet high gauge density instills reliable 

precipitation patterns.  This approach is rarely used. 

Basemap Approach 
Another option includes use of a basemap, also known as a climatologically-aided interpolation 

(Hunter 2005).  As noted before, the spatial patterns of the basemap govern the interpolation 

between points of hourly precipitation estimates, while the actual hourly precipitation values 

govern the magnitude.  This approach to interpolating point data across complex terrain is widely 

used.  In fact, it was used extensively by the NWS during their storm analysis era from the 1940s 

through the 1970s (USACE 1973, Hansen et al., 1988, Corrigan et al., 1999). 

 

In application, the hourly precipitation gauge values are first normalized by the corresponding 

grid cell value of the basemap before being interpolated.  The normalization allows information 
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and knowledge from the basemap to be transferred to the spatial distribution of the hourly 

precipitation.  Using an IDW squared algorithm, the normalized hourly precipitation values are 

interpolated to a grid.  The resulting grid is then multiplied by the basemap grid to produce the 

hourly precipitation grid.  This is repeated each hour of the storm. 

Radar Approach 
The coupling of SPAS with NEXRAD provides the most accurate method of spatially and 

temporally distributing precipitation.  To increase the accuracy of the results however, quality-

controlled precipitation observations are used for calibrating the radar reflectivity to rain rate 

relationship (Z-R relationship) each hour instead of assuming a default Z-R relationship.  Also, 

spatial variability in the Z-R relationship is accounted for through local bias corrections 

(described later).  The radar approach involves several steps, each briefly described below.  The 

radar approach cannot operate alone – either the basic or basemap approach must be completed 

before radar data can be incorporated.  The SPAS general code is where the daily and 

supplemental station are timed to hourly data.  Therefore, to get the correct timing of daily and 

supplemental stations, SPAS general needs to be run.  The timed hourly data are used as input 

into SPAS-NEXRAD to derive the dynamic ZR relationship each hour. 

 

Basemaps are only used to aid in the spatial interpolation.  In regards to SPAS-NEXRAD, a 

basemap is used to interpolate the radar residuals (bias adjustments). 

Z-R Relationship 
SPAS derives high quality precipitation estimates by relating quality controlled level–II 

NEXRAD radar reflectivity radar data with quality-controlled precipitation gauge data to 

calibrate the Z-R (radar reflectivity, Z, and precipitation, R) relationship.  Optimizing the Z-R 

relationship is essential for capturing temporal changes in the Z-R.  Most current radar-derived 

precipitation techniques rely on a constant relationship between radar reflectivity and 

precipitation rate for a given storm type (e.g., tropical, convective), vertical structure of 

reflectivity and/or reflectivity magnitudes.  This non-linear relationship is described by the Z-R 

equation below: 

 

Z = A Rb  (1) 

 

Where Z is the radar reflectivity (measured in units of dBZ), R is the precipitation (precipitation) 

rate (millimeters per hour), A is the “multiplicative coefficient” and b is the “power coefficient”.  

Both A and b are directly related to the rain drop size distribution (DSD) and rain drop number 

distribution (DND) within a cloud (Martner and Dubovskiy 2005).  The variability in the results 

of Z versus R is a direct result of differing DSD, DND and air mass characteristics (Dickens 

2003).  The DSD and DND are determined by complex interactions of microphysical processes 

that fluctuate regionally, seasonally, daily, hourly, and even within the same cloud.  For these 

reasons, SPAS calculates an optimized Z-R relationship across the analysis domain each hour, 

based on observed precipitation rates and radar reflectivity (see Figure E.9). 
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Figure E.9:  Example SPAS (denoted as “Exponential”) vs. default Z-R relationship (SPAS #1218, Georgia 

September 2009) 

 

The National Weather Service (NWS) utilizes different default Z-R algorithms, depending on the 

type of precipitation event, to estimate precipitation from NEXRAD radar reflectivity data across 

the United States (see Figure E.10) (Baeck and Smith 1998 and Hunter 1999).  A default Z-R 

relationship of Z = 300R1.4 is the primary algorithm used throughout the continental U.S.  

However, it is widely known that this, compared to unadjusted radar-aided estimates of 

precipitation, suffers from deficiencies that may lead to significant over or under-estimation of 

precipitation. 

 

Figure E.10:  Commonly used Z-R algorithms used by the NWS 

Instead of adopting a standard Z-R, SPAS utilizes a least squares fit procedure for optimizing the 

Z-R relationship each hour of the SPP.  The process begins by determining if sufficient 

(minimum 12) observed hourly precipitation and radar data pairs are available to compute a 

reliable Z-R.  If insufficient (<12) gauge pairs are available, then SPAS adopts the previous hour 

Z-R relationship, if available, or applies a user-defined default Z-R algorithm.  If sufficient data 

are available, the one-hour sum of NEXRAD reflectivity (Z) is related to the 1-hour precipitation 

at each gauge. A least-squares-fit exponential function using the data points is computed.  The 
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resulting best-fit, one hour-based Z-R is subjected to several tests to determine if the Z-R 

relationship and its resulting precipitation rates are within a certain tolerance based on the R-

squared fit measure and difference between the derived and default Z-R precipitation results.  

Experience has shown the actual Z-R versus the default Z-R can be significantly different 

(Figure E.11).  These Z-R relationships vary by storm type and location.  A standard output of all 

SPAS analyses utilizing NEXRAD includes a file with each hour's adjusted Z-R relationship as 

calculated through the SPAS program. 

 

Figure E.11:  Comparison of the SPAS optimized hourly Z-R relationships (black lines) versus a default Z=75R2.0 

Z-R relationship (red line) for a period of 99 hours for a storm over southern California. 

Radar-aided Hourly Precipitation Grids 
Once a mathematically optimized hourly Z-R relationship is determined, it is applied to the total 

hourly Z grid to compute an initial precipitation rate (inches/hour) at each grid cell. To account 

for spatial differences in the Z-R relationship, SPAS computes residuals, the difference between 

the initial precipitation analysis (via the Z-R equation) and the actual “ground truth” precipitation 

(observed – initial analysis), at each gauge.  The point residuals, also referred to as local biases, 

are normalized and interpolated to a residual grid using an inverse distance squared weighting 

algorithm.  A radar-based hourly precipitation grid is created by adding the residual grid to the 

initial grid; this allows precipitation at the grid cells for which gauges are “on” to be true and 

faithful to the gauge measurement.  The pre-final radar-aided precipitation grid is subject to 

some final, visual QC checks to ensure the precipitation patterns are consistent with the terrain; 

these checks are particularly important in areas of complex terrain where even QC’d radar data 

can be unreliable.  The next incremental improvement with SPAS program will come as the 

NEXRAD radar sites are upgraded to dual-polarimetric capability. 

Radar- and Basemap-Aided Hourly Precipitation Grids 
At this stage of the radar approach, a radar- and basemap-aided hourly precipitation grid exists 

for each hour.  At locations with precipitation gauges, the grids are equal, however elsewhere the 

grids can vary for a number of reasons.  For instance, the basemap-aided hourly precipitation 
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grid may depict heavy precipitation in an area of complex terrain, blocked by the radar, whereas 

the radar-aided hourly precipitation grid may suggest little, if any, precipitation fell in the same 

area.  Similarly, the radar-aided hourly precipitation grid may depict an area of heavy 

precipitation in flat terrain that the basemap-approach missed since the area of heavy 

precipitation occurred in an area without gauges.  SPAS uses an algorithm to compute the hourly 

precipitation at each pixel given the two results.  Areas that are completely blocked from a radar 

signal are accounted for with the basemap-aided results (discussed earlier).  Precipitation in areas 

with orographically effective terrain and reliable radar data are governed by a blend of the 

basemap- and radar-aided precipitation.  Elsewhere, the radar-aided precipitation is used 

exclusively.  This blended approach has proven effective for resolving precipitation in complex 

terrain yet retaining accurate radar-aided precipitation across areas where radar data are reliable.  

Figure E.12 illustrates the evolution of final precipitation from radar reflectivity in an area of 

complex terrain in southern California. 

 

Figure E.12a:  Map depicting 1-hour of precipitation utilizing inverse distance weighting of gauge 

precipitation for a January 2005 storm in southern California, USA 
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Figure E.12b:  Map depicting 1-hour of precipitation utilizing gauge data together with a climatologically-

aided interpolation scheme for a January 2005 storm in southern California, USA 

 

Figure E.12c:  Map depicting 1-hour of precipitation utilizing default Z-R radar-estimated interpolation (no gauge 

correction) for a January 2005 storm in southern California, USA 
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Figure E.12d:  Map depicting 1-hour of precipitation utilizing SPAS precipitation for a January 2005 storm in 

southern California, USA 

SPAS versus Gauge Precipitation 
Performance measures are computed and evaluated each hour to detect errors and inconsistencies 

in the analysis.  The measures include hourly Z-R coefficients, observed hourly maximum 

precipitation, maximum gridded precipitation, hourly bias, hourly mean absolute error (MAE), 

root mean square error (RMSE), and hourly coefficient of determination (r2). 

  

Figure E.13:  Z-R plot (a), where the blue line is the SPAS derived Z-R and the black line is the default Z-R, and 

the (b) associated observed versus SPAS scatter plot at gauge locations. 

Comparing SPAS-calculated precipitation (Rspas) to observed point precipitation depths at the 

gauge locations provides an objective measure of the consistency, accuracy and bias.  Generally 
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speaking SPAS is usually within 5% of the observed precipitation (see Figure E.13).  Less-than-

perfect correlations between SPAS precipitation depths and observed precipitation at gauged 

locations could be the result of any number of issues, including: 

• Point versus area: A rain gauge observation represents a much smaller area than the area 

sampled by the radar.  The area that the radar is sampling is approximately 1 km2, whereas a 

standard rain gauge has an opening 8 inches in diameter, hence it only samples approximately 

8.0x10-9 km2.  Furthermore, the radar data represent an average reflectivity (Z) over the grid cell, 

when in fact the reflectivity can vary across the 1 km2 grid cell.  Therefore, comparing a grid cell 

radar derived precipitation value to a gauge (point) precipitation depth measured may vary. 

• Precipitation gauge under-catch:  Although we consider gauge data “ground truth,” we 

recognize gauges themselves suffer from inaccuracies.  Precipitation gauges, shielded and 

unshielded, inherently underestimate total precipitation due to local airflow, wind under-catch, 

wetting, and evaporation.  The wind under-catch errors are usually around 5% but can be as large 

as 40% in high winds (Guo et al., 2001, Duchon and Essenberg 2001, Ciach 2003, Tokay et al., 

2010).  Tipping buckets miss a small amount of precipitation during each tip of the bucket due to 

the bucket travel and tip time.  As precipitation intensities increase, the volumetric loss of 

precipitation due to tipping tends to increase.  Smaller tipping buckets can have higher volumetric 

losses due to higher tip frequencies, but on the other hand capture higher precision timing. 

• Radar Calibration:  NEXRAD radars calibrate reflectivity every volume scan, using an 

internally generated test.  The test determines changes in internal variables such as beam power 

and path loss of the receiver signal processor since the last off-line calibration.  If this value 

becomes large, it is likely that there is a radar calibration error that will translate into less reliable 

precipitation estimates.  The calibration test is supposed to maintain a reflectivity precision of 1 

dBZ.  A 1 dBZ error can result in an error of up to 17% in Rspas using the default Z-R relationship 

Z=300R1.4.  Higher calibration errors will result in higher Rspas errors.  However, by performing 

correlations each hour, the calibration issue is minimized in SPAS. 

• Attenuation:  Attenuation is the reduction in power of the radar beams’ energy as it travels from 

the antenna to the target and back.  It is caused by the absorption and the scattering of power from 

the beam by precipitation.  Attenuation can result in errors in Z as large as 1 dBZ especially when 

the radar beam is sampling a large area of heavy precipitation.  In some cases, storm precipitation 

is so intense (>12 inches/hour) that individual storm cells become “opaque” and the radar beam is 

totally attenuated.  Armed with sufficient gauge data however, SPAS will overcome attenuation 

issues. 

• Range effects:  The curvature of Earth and radar beam refraction result in the radar beam 

becoming more elevated above the surface with increasing range.  With the increased elevation of 

the radar beam comes a decrease in Z values due to the radar beam not sampling the main 

precipitation portion of the cloud (i.e., “over topping” the precipitation and/or cloud altogether).  

Additionally, as the radar beam gets further from the radar, it naturally samples a larger and larger 

area, therefore amplifying point versus area differences (described above). 

• Radar Beam Occultation/Ground Clutter:  Radar occultation (beam blockage) results when 

the radar beam’s energy intersects terrain features as depicted in Figure E.14.  The result is an 

increase in radar reflectivity values that can result in higher than normal precipitation estimates.  

The WDT processing algorithms account for these issues, but SPAS uses GIS spatial 

interpolation functions to infill areas suffering from poor or no radar coverage. 

• Anomalous Propagation (AP):  AP is false reflectivity echoes produced by unusual rates of 

refraction in the atmosphere.  WDT algorithms remove most of the AP and false echoes, however 

in extreme cases the air near the ground may be so cold and dense that a radar beam that starts out 

moving upward is bent all the way down to the ground.  This produces erroneously strong echoes 

at large distances from the radar.  Again, equipped with sufficient gauge data, the SPAS bias 

corrections will overcome AP issues. 
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Figure E.14:  Depiction of radar artifacts. (Source: Wikipedia) 

SPAS is designed to overcome many of these short-comings by carefully using radar data for 

defining the spatial patterns and relative magnitudes of precipitation, but allowing measured 

precipitation values (“ground truth”) at gauges to govern the magnitude.  When absolutely 

necessary, the observed precipitation values at gauges are nudged up (or down) to force SPAS 

results to be consistent with observed gauge values.  Nudging gauge precipitation values helps to 

promote better consistency between the gauge value and the grid-cell value, even though these 

two values sometimes should not be the same since they are sampling different area sizes.  For 

reasons discussed in the "SPAS versus Gauge Precipitation" section, the gauge value and grid-

cell value can vary.  Plus, SPAS is designed to toss observed individual hourly values that are 

grossly inconsistent with radar data, hence driving a difference between the gauge and grid-cell.  

In general, when the gauge and grid-cell value differ by more than 15% and/or 0.50 inches, and 

the gauge data have been validated, then it is justified to artificially increase or decrease slightly 

the observed gauge value to "force" SPAS to derive a grid-cell value equal to the observed value.  

Sometimes simply shifting the gauge location to an adjacent grid-cell resolves the problems.  

Regardless, a large gauge versus grid-cell difference is a "red flag" and sometimes the result of 

an erroneous gauge value or a mis-located gauge, but in some cases the difference can only be 

resolved by altering the precipitation value. 

 

Before results are finalized, a precipitation intensity check is conducted to ensure the spatial 

patterns and magnitudes of the maximum storm intensities at 1-, 6-, 12-, etc. hours are consistent 

with surrounding gauges and published reports.  Any erroneous data are corrected and SPAS re-

run.  Considering all of the QA/QC checks in SPAS, it typically requires 5-15 basemap SPAS 

runs and, if radar data are available, another 5-15 radar-aided runs, to arrive at the final output. 

Test Cases 
To check the accuracy of the DAD software, three test cases were evaluated. 

“Pyramidville” Storm 

The first test was that of a theoretical storm with a pyramid shaped isohyetal pattern.  This case 

was called the Pyramidville storm.  It contained 361 hourly stations, each occupying a single 

grid-cell.  The configuration of the Pyramidville storm (see Figure E.15) allowed for 

uncomplicated and accurate calculation of the analytical DA truth independent of the DAD 
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software.  The main motivation of this case was to verify that the DAD software was properly 

computing the area sizes and average depths. 
1. Storm center: 39°N 104°W  

2. Duration: 10-hours 

3. Maximum grid-cell precipitation: 1.00”  

4. Grid-cell resolution: 0.06 sq.-miles (361 total cells) 

5. Total storm size: 23.11 sq-miles 

6. Distribution of precipitation: 

Hour 1:  Storm drops 0.10” at center (area 0.06 mi2) 

Hour 2:  Storm drops 0.10” over center grid-cell AND over one cell width around hour 

1 center 

Hours 3-10: 

1. Storm drops 0.10” per hour at previously wet area, plus one cell width around 

previously wet area 

2. Area analyzed at every 0.10” 

3. Analysis resolution: 15-sec (~.25 mi2) 

 

Figure E.15:  "Pyramidville” Total precipitation. Center = 1.00”, Outside edge = 0.10” 

The analytical truth was calculated independent of the DAD software, and then compared to the 

DAD output.  The DAD software results were equal to the truth, thus demonstrating that the DA 

estimates were properly calculated (Figure E.16). 
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Figure E.16:  10-hour DA results for “Pyramidville”; truth vs. output from DAD software 

The Pyramidville storm was then changed such that the mass curve and spatial interpolation 

methods would be stressed. Test cases included:  

• Two-centers, each center with 361 hourly stations 

• A single center with 36 hourly stations, 0 daily stations 

• A single center with 3 hourly stations and 33 daily stations 

 

As expected, results began shifting from the ‘truth,’ but minimally and within the expected 

uncertainty. 

Ritter, Iowa Storm, June 7, 1953 

Ritter, Iowa was chosen as a test case for a number of reasons.  The NWS had completed a storm 

analysis, with available DAD values for comparison.  The storm occurred over relatively flat 

terrain, so orographics were not an issue. An extensive “bucket survey” provided a great number 

of additional observations from this event.  Of the hundreds of additional reports, about 30 of the 

most accurate reports were included in the DAD analysis. The DAD software results are very 

similar to the NWS DAD values (Table E.2). 

Table E.2:  The percent difference [(AWA-NWS)/NWS] between the AWA DA results and those published by the 

NWS for the 1953 Ritter, Iowa storm. 

% Difference      

  Duration (hours) 

Area (sq.mi.)   6 12 24 total 

10   -15% -7% 2% 2% 

100   -7% -6% 1% 1% 

200   2% 0% 9% 9% 

1000   -6% -7% 4% 4% 

5000   -13% -8% 2% 2% 

10000   -14% -6% 0% 0% 

Depth-Area Curves for 10-hr Storm

"Pyramidville" - 39.5N 104.5W & 39N 104W
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Westfield, Massachusetts Storm, August 8, 1955 

Westfield, Massachusetts was also chosen as a test case for a number of reasons.  It is a probable 

maximum precipitation (PMP) driver for the northeastern United States.  Also, the Westfield 

storm was analyzed by the NWS and the DAD values are available for comparison. Although 

this case proved to be more challenging than any of the others, the final results are very similar 

to those published by the NWS (Table E.3). 

Table E.3:  The percent difference [(AWA-NWS)/NWS] between the AWA DA results and those published by the 

NWS for the 1955 Westfield, Massachusetts storm 

% Difference         

  Duration (hours) 

Area (sq. mi.)   6 12 24 36 48 60 total 

           

10   2% 3% 0% 1% -1% 0% 2% 

100   -5% 2% 4% -2% -6% -4% -3% 

200   -6% 1% 1% -4% -7% -5% -5% 

1000   -4% -2% 1% -6% -7% -6% -3% 

5000   3% 2% -3% -3% -5% -5% 0% 

10000   4% 9% -5% -4% -7% -5% 1% 

20000   7% 12% -6% -3% -4% -3% 3% 

 

The primary components of SPAS are: storm search, data extraction, quality control (QC), 

conversion of daily precipitation data into estimated hourly data, hourly and total storm 

precipitation grids/maps and a complete storm-centered DAD analysis. 

Output 
Armed with accurate, high-resolution precipitation grids, a variety of customized output can be 

created (see Figures E.17A-D).  Among the most useful outputs are sub-hourly precipitation 

grids for input into hydrologic models.  Sub-hourly (i.e., 5-minute) precipitation grids are created 

by applying the appropriate optimized hourly Z-R (scaled down to be applicable for 

instantaneous Z) to each of the individual 5-minute radar scans; 5-minutes is often the native 

scan rate of the radar in the US.  Once the scaled Z-R is applied to each radar scan, the resulting 

precipitation is summed up.  The proportion of each 5-minute precipitation to the total 1-hour 

radar-aided precipitation is calculated.  Each 5-minute proportion (%) is then applied to the 

quality controlled, bias corrected 1-hour total precipitation (created above) to arrive at the final 

5-minute precipitation for each scan.  This technique ensures the sum of 5-minute precipitation 

equals that of the quality controlled, bias corrected 1-hour total precipitation derived initially. 

Depth-area-duration (DAD) tables/plots, shown in Figure E.17d, are computed using a highly 

computational extension to SPAS.  DADs provide an objective three-dimensional (magnitude, 

area size, and duration) perspective of a storms’ precipitation.  SPAS DADs are computed using 

the procedures outlined by the NWS Technical Paper 1 (1946). 
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a)  b)  

c)  d)  

Figure E.17:  Various examples of SPAS output, including (a) total storm map and its associated (b) basin average 

precipitation time series, (c) total storm precipitation map, (d) depth-area-duration (DAD) table and plot 

Summary 
Grounded on years of scientific research with a demonstrated reliability in post-storm analyses, 

SPAS is a hydro-meteorological tool that provides accurate precipitation analyses for a variety of 

applications.  SPAS has the ability to compute precise and accurate results by using sophisticated 

timing algorithms, basemaps, a variety of precipitation data and most importantly NEXRAD 

weather radar data (if available).  The approach taken by SPAS relies on hourly, daily and 

supplemental precipitation gauge observations to provide quantification of the precipitation 

amounts while relying on basemaps and NEXRAD data (if available) to provide the spatial 

distribution of precipitation between precipitation gauge sites.  By determining the most 

appropriate coefficients for the Z-R equation on an hourly basis, the approach anchors the 

precipitation amounts to accepted precipitation gauge data while using the NEXRAD data to 

distribute precipitation between precipitation gauges for each hour of the storm.  Hourly Z-R 

coefficient computations address changes in the cloud microphysics and storm characteristics as 

the storm evolves.  Areas suffering from limited or no radar coverage are estimated using the 

spatial patterns and magnitudes of the independently created basemap precipitation grids.  

Although largely automated, SPAS is flexible enough to allow hydro-meteorologists to make 

important adjustments and adapt to any storm situation. 
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Appendix F 
Storm Data (Separate Binding) 
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GIS PMP Tool Documentation  
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1. PMP Tools Description and Usage 

The PMP Evaluation Tools employed in this study are based on a Python script designed to run 

within the ArcGIS environment.  ESRI’s ArcGIS Desktop software is required to run the tool. 

The tool is compatible with ArcMap, ArcCatalog, or ArcGIS Pro.  It is recommended that the 

most current version of the software is used.  The PMP, Spatial Distribution, and Snowmelt tools 

provide gridded output at a spatial resolution of 90 arc-seconds (equivalent to .025 x .025 

decimal degrees) for a user-designated basin or area at user-specified durations.  Standard 

outputs include gridded and basin average PMP depths and temporally distributed 

accumulations.  ESRI’s Spatial Analyst extension is required for the Spatial Distribution and 

Snowmelt tools.  

1.1 File Structure 

The PMP tool, source script, and the storm databases are stored within the 

‘PMP_Evaluation_Tool’ project folder.  The file and directory structure within the 

‘PMP_Evaluation_Tool’ folder should be maintained as provided, as the script will locate 

various data based on its relative location within the project folder.  If the subfolders or 

geodatabases within are relocated or renamed, then the script must be updated to account for 

these changes. 

 

The file structure consists of three subfolders: Input, Output, and Script. The ‘Input’ folder 

contains all input GIS files (Figure 1.1).  There are six ArcGIS file geodatabase containers within 

the ‘Input’ folder: DAD_Tables.gdb, Non_Storm_Data.gdb, Spatial_Distribution.gdb, 

Storm_Adj_Factors.gdb, SWE.gdb, and Temperature.gdb.  The DAD_Tables.gdb contains the 

DAD tables (in file geodatabase table format) for each of the SPAS-analyzed storm DAD zones 

included in the storm database.  The Storm_Adj_Factors.gdb contains a feature class for each 

storm center and stores the adjustment factors for each grid point as a separate feature.  These 

feature classes are organized into feature datasets, according to storm type (General, Local, and 

Cool-Season).  The storm adjustment factor feature classes share their name with their DAD 

Table counterpart.  The naming convention is SPAS_XXXX_Y, where XXXX is the SPAS 

storm ID number and Y is the DAD zone number.  In the case of a hybrid storm (i.e., a storm 

that is run as both a general and local storm type), there will be a suffix “_gen” or “_loc” to 

differentiate the storm type specific to the adjustment factors in the feature class.  The 

Non_Storm_Data.gdb contains spatial data not directly relating to the input rainfall depth or 

adjustment factors such as the grid network vector files.  The Spatial_Distribution.gdb contains 

the total storm rainfall raster files for storms used by the spatial distribution tool.  The SWE.gdb 

contains the gridded 100-year snow water equivalent (SWE) datasets used by the snowmelt 

runoff tool.  Finally, the Temperature.gdb contains the gridded average daily temperature 

datasets used by the snowmelt runoff tool. 
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Figure 1.1:  PMP tool file structure 

The ‘Script’ folder contains an ArcToolbox called North_Dakota_PMP_Tools.tbx.  The toolbox 

contains a script tool called ‘Gridded PMP Tool’ that is used to calculate PMP, a script called 

‘Spatial Distribution Tool’, and a script called ‘Snowmelt Tool’. The PMP Tool will calculate 

gridded all-season and cool-season PMP depths in inches for a basin or user specified area size.  

The Spatial Distribution Tool will spatially redistribute the gridded PMP based on actual storm 

patterns when required.  The Snowmelt Tool can be run to calculate a gridded snowmelt time 

series for a basin or user specified area size.  The snowmelt runoff amounts can then be added to 

the cool-season PMP depths to determine a total combined depth of cool-season PMP and 

snowmelt.   

ArcGIS should be used for viewing the GIS tools file structure and interacting with the input and 

output geospatial data.  A typical operating system’s file browser does not allow access to the 

geodatabase containers and cannot be used to directly run the tool.  

 

The tools are stored within the North_Dakota_PMP_Tools.tbx.  ArcToolbox opens and runs the 

scripts within the ArcGIS environment and can be run from ArcCatalog, ArcMap, or ArcPro map 

session. In addition to running as a standalone tool, the tool can be incorporated into Model 

Builder or be called as a sub-function of another script.  

 

To run the tools, the user navigates to the North_Dakota_PMP_Tools.tbx toolbox, expands it, 

and opens the appropriate tool.  The dialogue window opens, and the user populates input 

parameters and clicks the ‘OK’ button.  The tool will run in the foreground and display text 

output in the Messages window.  Processing time can vary greatly depending on area of interest 

(AOI) size, the number of durations selected, and computer hardware.  Most basins generally 

take 10 to 20 minutes to analyze all three storm types on a typical computer interface. The tools 

produce PMP output described in Section 1.5. 
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1.2 PMP Tool Usage 

The tool requires several parameters as input to define the area and durations to be analyzed.  

The first parameter required by the tool dialogue is a feature layer, such as a basin shapefile or 

feature class, designed to outline the AOI for the PMP or snowmelt analysis.  If the AOI dataset 

does not have a surface projection, the tool will apply the Albers Equal Area projection for the 

purpose of calculating the AOI area size.  If the feature layer has multiple features (or polygons), 

the tool will use the combined area as the analysis region.  Only the selected polygons will be 

used if the tool is run from the ArcMap environment with selected features highlighted.  If the 

AOI shapefile extends beyond the project analysis domain, PMP will only be calculated for grid 

cells inside the project domain.  The AOI shapefile or feature class should not have any spaces or 

symbol characters in the filename. 

 

The second parameter requires the path of the ‘PMP_Evaluation_Tool’ folder.  The default 

location of the folder is set within the tool parameters, but it can be changed if the user wishes to 

link the tool to another set of input datasets.  The ‘PMP_Evaluation_Tool’ project folder should 

be stored locally at a location that can be accessed (both read/write permissions) by ArcGIS.  

The user then will need to set the ‘Output Folder’ path which provides the tool with the location 

to create the output PMP files.  The user must have read/write privileges for this folder location. 

Note, the tool will overwrite the previous output if all input parameters are the same.  The user 

then selects the durations to be run for each storm type.  Individual durations can be run by 

checking each individual box or all durations can be run by clicking the “Select All” option 

(Figure 1.2).  

The next parameter allows the user to either use the basins calculated area size or override the 

default to enter a custom area (in square miles) for areal-average PMP calculations.  The user 

then has the option to have the tool perform a weighted analysis on the grid cells underlying the 

AOI boundary.  If this option is checked each grid cell along the basin’s boundary will be 

weighted by the portion of the cell’s area inside the basin for the purpose of the basin average 

PMP table calculations.  It is checked by default.  If this option is disabled, the tool will output a 

basin average of all grid cells equally that intersect the basin boundary.  There is an option to 

include sub-basin averages.  This will calculate an average PMP depth for each feature in the 

input basin feature class from the overall basin PMP.  The average sub-basin depths will be 

based on the area-size of the overall basin.  If the ‘weighted’ option was selected above it will 

also be applied to the sub-basin averages.  The user must select a field within the AOI to be used 

to identify each sub-basin.  The field can be of numeric or text data type but must have a unique 

ID for each polygon.  This option is disabled by default.  The user can also choose to include a 

depth-duration chart .png image in the output folder for each storm type.  Finally, the user can 

select the option to apply the appropriate temporal distribution patterns to the basin average PMP 

for each storm type.  This function needs all durations of PMP to be calculated, so if this option 

is selected the tool will automatically run all durations for all storm types regardless of what 

durations were selected by the user in the previous steps (Figure 1.3).  
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Figure 1.2:  PMP tool input/output parameters with all durations set to run for the Forest drainage basin in 

eastern North Dakota 
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Figure 1.3:  PMP tool input/output parameters with default options enabled 

1.3 Spatial Distribution Tool Usage 

The Spatial Distribution Tool (Figure 1.4) can be run after the Gridded PMP Tool to provide 

alternate spatial distribution patterns over the drainage basin.  The tool uses the total storm 

rainfall patterns from the various historical events in the PMP tool database to redistribute 

gridded PMP over the basin, without changing the basin average PMP.  The tool can be used for 

any drainage area inside the project domain; however, spatial variations and their effect on PMP 

is nominal for smaller area sizes and therefore alternative spatial patterns are not required for 

basins less than 50 mi2.  By default, the Spatial Distribution Tool “centers” the spatial pattern 

over the centroid of the basin.  The user also has the option to center the pattern elsewhere in the 

basin by providing coordinates for a point inside the basin.  The tool applies the following 

default recommended spatial patterns, each of which are representative of meteorologically 

possible spatial patterns observed in storms used for PMP development: 

 

Local Storm: 

• LS - Wooster, OH, Jul. 1969 (SPAS_1209_1) 

• LS - Boyden, IA, Sep. 1926 (SPAS_1427_1) 

• LS - Hayward, WI, Aug. 1941 (SPAS_1699_1) 

General Storm: 

• GS - Ida Grove, IA, Aug. 1962 (SPAS_1527_1) 

• GS - Council Grove, KS, Jul. 1951 (SPAS_1583_1) 

Cool-Season Storm: 

• CS - Bellefontaine, OH, Mar. 1913 (SPAS_1698_1) 

• CS - Groton, SD, May. 2007 (SPAS_1733_1) 

 

Alternatively, the user can choose spatial patterns from the list of storms in the database.  If the 

user chooses this option, they should have enough knowledge of the various historical events to 

ensure they are reasonable options for the drainage basin. 
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The basin input should be the same basin shapefile/feature class used in the gridded PMP tool.  

As with the PMP tool, the second input parameter is the location of the ‘PMP Evaluation Tool’ 

folder, which should be populated automatically.  The third parameter is the ‘PMP_Points’ 

feature class, which is an output from the PMP tool.  The fourth parameter is the option to 

choose to use the basin centroid as the target center for the spatial pattern(s).  This is the default 

choice.  If this box is unchecked, the user can then enter the target center location, in degrees 

longitude (X Coordinate) and degrees latitude (Y Coordinate) as the fifth parameter.  The user 

should take care to ensure this location is within the basin.  The six parameter is the option to 

apply the default spatial patterns (listed above).  This option is recommended.  The spatial 

patterns for the appropriate storm type, determined by the ‘PMP_Points’ feature class from the 

third parameter, will be applied.   If the user chooses not to use the default spatial patterns and 

unchecks this box, the various spatial patterns for parameter six will become available.  The user 

can check multiple patterns, but they should correspond with the input PMP storm type (i.e., 

“LS” patterns for the local PMP storm type).  Finally, the user chooses the output folder location 

for the spatially redistributed PMP. 

 

 

Figure 1.4:  Spatial Distribution tool input/output parameters with default options enabled 
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1.4 Snowmelt Tool Usage 

Like the PMP tool, the first parameter of the snowmelt tool also requires the path of the 

‘PMP_Evaluation_Tool’ folder (Figure 1.5).  The default location of the folder is set within the 

tool parameters, but it can be changed if the user wishes to link the tool to another set of input 

datasets.  The ‘PMP_Evaluation_Tool’ project folder should be stored locally at a location that 

can be accessed (both read/write) by ArcGIS desktop.  Next the user chooses a start date for the 

melt event.  The default is March 15, but the user can type in or use the calendar to choose any 

date between March 1 and June 15.  The start date must fall between these dates as the 100-year 

SWE datasets were only created for this period as significant melting is unlikely with cool-

season PMP before March 1 and no snow water equivalent will be available after June 15.  

 

 

Figure 1.5:  Snowmelt tool input/output parameters with default options enabled 

 

There are multiple items to consider when choosing the start date of the melt and this will vary 

greatly by basin location and area size.  Cool-season PMP and Snowmelt are not required for 

basins less than 100-mi2.  The user should apply knowledge of the critical time of the year with 

maximum SWE melt potential for a given basin.  If this is not known, then several sensitivities 

should be run to determine the optimized dates of snowmelt.  The next parameter allows the user 

to simulate a 1, 3, 5, or 7-day rain-on-snow event.  This is an optional parameter and by default 
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the tool does not consider this, it is enabled by a dropdown menu if the users choose to model a 

rain-on-snow scenario (Figure 1.6). 

 

 

Figure 1.6:  Dropdown menu for rain-on-snow option 

 

The rain-on-snow melt function applies a maximized temperature profile to account for and 

represent the relatively warm and moist airmass associated with cool-season PMP rainfall events.  

A maximization of 5°F, based on storm maximization methods, increases the daily average 

temperature by 5°F for the duration of the rain-on-snow event with a 2.5°F increase the day 

before and the day after the event to produce a more realistic temperature sequence.  For 

example, if the user chose a start date of March 15th with a 3-day rain-on-snow event, the first 

day would extract the SWE and temperature values from embedded datasets as normal.  On the 

second day the rain-on-snow event would trigger the temperature increase by adding 2.5 °F.  

Then the temperatures would be increased by 5°F over the temperatures before the cool-season 

PMP rainfall period for the next 3 days for the rainfall event.  Finally, the temperatures would 

drop down by 2.5°F the next day and then back to the actual extracted temperature values for the 

duration of the period run.  

 

Next, the melt coefficient (Cm) sets the conditions for the melt.  By default, this dropdown option 

uses a clear day melt coefficient.  The Cm can be set to three other values (Figure 1.7) that 

represent different meteorologic conditions for rain-on-snow conditions. 

 

 

Figure 1.7:  Dropdown menu for melt coefficients 

 

There are four options to set the melt conditions using the melt coefficient. 

 

• 0.06 – Clear sky, no rain, limited melt factor (this is the default). 

• 0.187 – Heavy rain, 10 mph wind melt factor. 

• 0.270 – Heavy rain, 20 mph wind melt factor. 

• 0.353 – Heavy rain, 30 mph wind melt factor. 

 

The user will then choose the input drainage basin as a polygon feature class to model, then 

choose the output folder location.  The next optional parameter provides output for a discrete 

location based on the input coordinates along with the basin average values.   
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The standard output of the tool is an ESRI geodatabase table.  The last two optional parameters 

will also include the output in raster and excel formats if chosen instead of just the geodatabase 

table of the basin average.  

1.5 PMP Tool Output 

Once the tool has been run, the output file geodatabases will be populated with the model results. 

The GIS files can then be brought into an ArcMap, or other compatible GIS environments, for 

mapping and analysis.  

 

Note, the tool is set to have overwrite capabilities; if output data exists, it will be overwritten the 

next time the tool is run, if the same output folder and same parameters are used.  

 

A separate output folder is created for each storm type and the output is organized within file 

geodatabases and named according to the input basin feature name and analyzed PMP area.  

Each output file geodatabase contains a feature class which stores each grid point centroid within 

the basin as a separate feature.  Each feature has a field for the grid ID, latitude, longitude, 

analysis zone, elevation, PMP (for each duration), and the contributing storm ID.  PMP raster 

files are also stored within the file geodatabase.  The naming convention for the raster files is the 

storm type and duration (L for Local, G for General, and C for Cool-Season), followed by the 

input basin feature name, and ending with the basin area (in square miles).  If temporal patterns 

were applied, the output tables will also be in the geodatabase.  A folder named CSV is also 

created and all the geodatabase tables are exported to csv files.  An example of the output file 

structure is shown in Figure 1.8. 
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Figure 1.8:  Example of the PMP tool output file structure 

 

If the temporal patterns were applied, you will see a table named Temporal_Distribution_Check.  

This is important as it evaluates the temporally distributed PMP values for each duration against 

the PMP value for that duration.  The table has a pass or fail.  If the temporally distributed PMP 

value exceeds the PMP at a given duration, the table will have FAIL for that duration and this 

temporal pattern should not be applied.  An example is shown in Figure 1.9. 
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Figure 1.9:  Example of the temporal check results 

 

In the example above (Figure 1.9), the basin average 1-hour PMP is 2.74”.  Using the temporal 

distribution for one of the controlling storms, the maximum 1-hour value is 2.66”.  This passes 

the check.  However, for the 2-hour PMP the maximum temporally distributed value of 5.21” is 

exceeding the 4.4” PMP values.  This fails the check, and this pattern should not be applied to 

the PMP values.  

1.6 Spatial Distribution Tool Output 

The Spatial Distribution Tool output follows the same format as the PMP Tool output described 

in Section 1.5 in that there will be a “PMP_Points” feature class with the point vector PMP 

depths for each grid point, and gridded PMP raster files for each duration included in the original 

PMP output, all included within a file geodatabase.  A separate file geodatabase will be created 

for each spatial pattern applied (either by default or chosen by the user).  The naming convention 

is also similar but also includes the SPAS ID number to identify the spatial pattern used and the 

“spatial” suffix on each output file to identify as spatially redistributed.  Figure 1.10 shows 

sample spatially distributed general storm PMP for the Matejcek Dam basin (121-square mile).  

There is a separate file geodatabase for both of the general storm default spatial patterns; SPAS 

1527 (August 1962 event) and SPAS 1583 (July 1951 event). 
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Figure 1.10 – Example of Spatial Distribution Tool output 

1.7 Snowmelt Tool Output 

Once the tool has been run, the output file geodatabases will be populated with the model results. 

The GIS files can then be brought into an ArcMap, or other compatible GIS environments, for 

mapping and analysis.  If the option to export to Excel spreadsheet was enabled, then a copy of 

this geodatabase will be created as an Excel file.   

 

Note, the tool is set to have overwrite capabilities; if output data exists, it will be overwritten the 

next time the tool is run, if the same output folder and same parameters are used.  

 

Based on the tools optional input parameters, the tool will create a geodatabase and populate 

with the tool output.  The naming convention will be “Snowmelt_basin Name_Start Date”.gdb  

The output table will contain seven fields: 

 

• Day – The date of the melt day 

• Ta – Basin average daily temperature 

• DegreeDays – Basin average daily temperature above freezing 

• Cm – Melt coefficient used 

• SWE – Basin average 100-year snow water equivalent based on the start date chosen 

• Melt – Basin average daily melt 

• MeltAccum – Basin average melt accumulation 
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Figure 1.11:  Example of the Snowmelt tool output table run with default parameters for the Forest drainage basin 

 

In the example table above the Forest basin was run with the default input parameters.  The 

March 15th start date produced below freezing temperatures for the first thirteen days.  The 6.06 

inches of SWE available does not start to melt until the 14th day and only results in melting a 

total of 0.47 inches. 

 

Along with the basin average output table shown in Figure 1.11, the tool will also export each 

field’s result as a gridded geodatabase raster if chosen in input parameters.  

1.8 Known Issues and Troubleshooting 

The GIS PMP tool has undergone a beta testing program during development.  One goal of the 

beta testing program was to identify possible issues with the GIS tool.  The following guidelines 

may prevent issues with running the GIS tool.  

• Ensure ArcGIS Desktop is up to date with the most recent version release and maintenance is 

current. 

• Ensure all file and path names do not have spaces or non-alphanumeric symbols (e.g., #, $, 

%).  Underscores are acceptable and a good alternative to using spaces. 
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• Close any other applications or instances of ArcMap that may interfere with the current 

session, files, or file paths that will be used by the tool. 

• Ensure that all file paths, input and output files, and ArcGIS Environment settings (including 

the Default.gdb and Scratch.gdb) are local and not set to a network location. 

 

If the points above have been verified and issues persist, the user may try the following actions to 

address the issue: 

• Close out all ArcMap sessions and all ArcGIS applications and restart session. 

• Restart computer.  This may be required to completely clear any locks on files or memory. 

• Run the Repair Geometry tool on the AOI shapefile or feature class to correct any geometry 

issues within the file. 

• Rename AOI file.  Change tool and/or output folder paths. 

• If issues persist it may be necessary to contact ESRI support or perform a clean ArcGIS 

installation or upgrade.  
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2. Sample Basin Example 

2.1 PMP Tool 

This section will walk through the steps required to run the tool for a sample basin. This example 

will use the Forest Basin.  It is 937 square miles and is in northeastern North Dakota.  

 

 
 

• Once downloaded add the North Dakota PMP Tool ArcToolbox to your ArcMap, ArcPro, or 

ArcCatalog session.  

 

 
 

• Double click the Gridded PMP Tool script and the input dialog will appear. 

• First choose the input basin.  If the file is already in your project, you can choose it from the 

dropdown.  Otherwise click on the folder to navigate to the file location.  
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• The next parameter automatically populates with the location of the PMP_Evaluation_Tool 

folder.   

 

 
 

• Next navigate to a folder location to store the tool output. 

  

 
 

• Now choose the durations to be run for each storm type.  In this example we will run all durations 

for all storm types.  
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• The default options are checked for the remaining except for the option to apply temporal 

distributions. Check the box to apply the temporal distributions to the PMP values.  

 

 
 

• Click ok to run the tool.  The tool runs and provides feedback on the progres as the script runs.  

Make sure the highlighted checkbox is unchecked and you can go through the report when 

completed.  
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• Navigate to output folder chosen in tool input dialog to explore output files. 
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2.2 Snowmelt Tool 

• Next run the Snowmelt Tool if needed for your specific location.  Double click the Snowmelt 

Tool script and the tool dialog opens.  In the example below the location of the 

PMP_Evaluation_Tool folder is already populated.  Set appropriate melt start and end dates.  In 

this example, March 15th through April 15th is utilized along with a 3-day rain-on-snow PMP 

event with a worst case melt coefficient of 0.353.  The basin file and output location are input.  

We did not choose to add gridded data but instead chose to output an excel file of the basin 

average values.  
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• Click ok and the tool runs and reports values for each day in the dialog. 
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• Navigate to the output folder location and we can see that the tool added a geodatabase and an 

excel table to the output folder.  These resulting daily melt accumulations can then be added to 

the cool-season PMP depths to get a total amount of potential runoff. 

 

 
 

2.3 Spatial Distribution Tool 

• Finally, if need the Spatial Distribution Tool can be utilized.  If needed, double click on the 

Spatial Distribution Tool script to distribute the PMP depths created earlier based on actual 

historic storm patterns.  In the input dialog below we chose the same Forest Basin file.  The 

location of the PMP_Evaluation_Tool folder is automatically populated.  Navigate to the output 

PMP points created earlier from running the PMP Tool.  In this case the example uses local 

storms.  The default spatial location is to center the storm over the basin and to apply the 

recommended storm patterns.  Finally, select an output location.  
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• Click ok and the tool runs providing feedback like the PMP and Snowmelt Tools.  In this case it 

applies three storm patterns to the default storm pattern created with the PMP tool.  
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• Navigate to the output folder location and where the tool has created three new geodatabases with 

a new set of PMP points and new PMP rasters for each duration based on each storm.  
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Appendix H 
GIS Tool Python Script 
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Name: Gridded PMP Tool Python Script 

 

Script Version: 1 

 

Python Version: 2.7 

 

ArcGIS Version: ArcGIS Desktop 10.7.1 

 

Author: Applied Weather Associates 

 

Usage:  The tool is designed to be executed within an ArcMap environment with an open MXD session. 

 

Description: 

    This tool calculates PMP depths for a given drainage basin for the 

specified durations.  PMP point values are calculated (in inches) for each 

grid point (spaced at 90 arc-second intervals) over the project domain. The 

points are converted to gridded PMP datasets for each duration. 

 

 

---------------------------------------------------------------------------''' 

 

########################################################################### 

## import Python modules 

 

import sys 

import arcpy 

import os 

import traceback 

from arcpy import env 

import arcpy.analysis as an 

import arcpy.management as dm 

import arcpy.conversion as con 

import numpy as np 

import pandas as pd 

from pandas import ExcelFile 

import matplotlib.pyplot as plt 

from heapq import nlargest 

 

 

env.overwriteOutput = True                                                # Set overwrite option 

env.addOutputsToMap = False 

 

########################################################################### 

## get input parameters 

 

basin = arcpy.GetParameter(0)                                                   # get AOI Basin Shapefile 

home = arcpy.GetParameterAsText(1)                                              # get location of 'PMP' Project Folder 

outLocation = arcpy.GetParameterAsText(2) 

if arcpy.GetParameter(12) == False: 

    locDurations = arcpy.GetParameter(3)                                            # get local storm durations (string) 

    genDurations = arcpy.GetParameter(4)                                            # get general storm durations (string) 

    coolDurations = arcpy.GetParameter(5)                                           # get Cool Season storm durations (string) 

else: 

    locDurations = ('01','02','03','04','05','06','12','24') 

    genDurations = ('01','02','03','04','05','06','12','24','48','72') 

    coolDurations = ('01','02','03','04','05','06','12','24','48','72') 

 

weightedAve = arcpy.GetParameter(8)      # get option to apply weighted average 

(boolean) 

#outputTable = arcpy.GetParameter(9)       # get file path for basin average 

summary table 
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includeSubbasin = arcpy.GetParameter(9)      # get option add subbasin averages 

(boolean) 

subbasinIDfield = arcpy.GetParameterAsText(10)      # Subbasin ID field from 

AOI Basin Shapefile 

ddChart = arcpy.GetParameter(11)       # get option to create depth-duration 

chart(boolean) 

runTemporal = arcpy.GetParameter(12)       # get option to run temporal 

distributions (boolean) 

 

dadGDB = home + "\\Input\\DAD_Tables.gdb"                                       # location of DAD tables 

adjFactGDB = home + "\\Input\\Storm_Adj_Factors.gdb"                            # location of feature datasets containing total 

adjustment factors  

arcpy.AddMessage("\nDAD Tables geodatabase path:  " + dadGDB) 

arcpy.AddMessage("Storm Adjustment Factor geodatabase path:  " + adjFactGDB) 

 

#mxd = arcpy.mapping.MapDocument("CURRENT") 

#df = arcpy.mapping.ListDataFrames(mxd)[0] 

basAveTables = []                                                               # global list of Basin Average Summary tables      

 

def pmpAnalysis(aoiBasin, stormType, durList): 

 

    ########################################################################### 

    ## Create PMP Point Feature Class from points within AOI basin and add fields 

    def createPMPfc(): 

 

        arcpy.AddMessage("\nCreating feature class: 'PMP_Points' in Scratch.gdb...") 

        dm.MakeFeatureLayer(home + "\\Input\\Non_Storm_Data.gdb\\Vector_Grid", "vgLayer")               # make a feature layer of 

vector grid cells 

        dm.SelectLayerByLocation("vgLayer", "INTERSECT", aoiBasin)                                      # select the vector grid cells that 

intersect the aoiBasin polygon 

        dm.MakeFeatureLayer(home + "\\Input\\Non_Storm_Data.gdb\\Grid_Points", "gpLayer")               # make a feature layer of 

grid points 

        dm.SelectLayerByLocation("gpLayer", "HAVE_THEIR_CENTER_IN", "vgLayer")                          # select the grid points 

within the vector grid selection 

        con.FeatureClassToFeatureClass("gpLayer", env.scratchGDB, "PMP_Points")                         # save feature layer as 

"PMP_Points" feature class 

        arcpy.AddMessage("(" + str(dm.GetCount("gpLayer")) + " grid points will be analyzed)\n") 

         

        # Add PMP Fields 

        for dur in durList: 

            arcpy.AddMessage("\t...adding field: PMP_" + str(dur)) 

            dm.AddField(env.scratchGDB + "\\PMP_Points", "PMP_" + dur, "DOUBLE") 

 

        # Add STORM Fields (this string values identifies the driving storm by SPAS ID number) 

        for dur in durList: 

            arcpy.AddMessage("\t...adding field: STORM_" + str(dur)) 

            dm.AddField(env.scratchGDB + "\\PMP_Points", "STORM_" + dur, "TEXT", "", "", 16, "Storm ID " + dur + "-hour") 

 

        # Add STNAME Fields (this string values identifies the driving storm by SPAS ID number) 

#        for dur in durList: 

#            arcpy.AddMessage("\t...adding field: STNAME_" + str(dur)) 

#            dm.AddField(env.scratchGDB + "\\PMP_Points", "STNAME_" + dur, "TEXT", "", "", 50, "Storm Name " + dur + "-

hour") 

         

        return 

 

    ########################################################################### 

    ##  Define getAOIarea() function: 

    ##  getAOIarea() calculates the area of AOI (basin outline) input shapefile/ 

    ##  featureclass.  The basin outline shapefile must be projected.  The area 

    ##  is sqaure miles, converted from the basin layers projected units (feet 

    ##  or meters).  The aoiBasin feature class should only have a single feature 
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    ##  (the basin outline).  If there are multiple features, the area will be stored 

    ##  for the final feature only. 

 

    def getAOIarea(): 

        sr = arcpy.Describe(aoiBasin).SpatialReference                                          # Determine aoiBasin spatial reference system 

        srname = sr.name 

        srtype = sr.type 

        srunitname = sr.linearUnitName                                                          # Units 

        arcpy.AddMessage("\nAOI basin spatial reference:  " + srname + "\nUnit type: " + srunitname + "\nSpatial reference type: " 

+ srtype) 

                          

        aoiArea = 0.0 

        rows = arcpy.SearchCursor(aoiBasin) 

        for row in rows: 

            feat = row.getValue("Shape") 

            aoiArea += feat.area 

        if srtype == 'Geographic':                                  # Must have a surface projection.  If one doesn't exist it projects a temporary 

file and uses that. 

            arcpy.AddMessage("\n***The basin shapefile's spatial reference 'Geographic' is not supported.  Projecting temporary 

shapefile for AOI.***")    

            arcpy.Project_management(aoiBasin,env.scratchGDB + "\\TempBasin",102039)     # Projects AOI Basin (102039 = 

USA_Contiguous_Albers_Equal_Area_Conic_USGS_version) 

            TempBasin = env.scratchGDB + "\\TempBasin"            # Path to temporary basin created 

in scratch geodatabase  

            sr = arcpy.Describe(TempBasin).SpatialReference           # Determine Spatial Reference of temporary 

basin 

            aoiArea = 0.0 

            rows = arcpy.SearchCursor(TempBasin)      # Assign area size in square 

meters 

            for row in rows: 

                feat = row.getValue("Shape") 

                aoiArea += feat.area     

            aoiArea = aoiArea * 0.000000386102                                           # Converts square meters to square miles 

        elif srtype == 'Projected': 

            if srunitname == "Meter": 

                aoiArea = aoiArea * 0.000000386102                                              # Converts square meters to square miles 

            elif srunitname == "Foot" or "Foot_US": 

                aoiArea = aoiArea * 0.00000003587                                               # Converts square feet to square miles 

            else: 

                arcpy.AddMessage("\nThe basin shapefile's unit type '" + srunitname + "' is not supported.") 

                sys.exit("Invalid linear units")                                                # Units must be meters or feet 

             

        aoiArea = round(aoiArea, 3) 

        arcpy.AddMessage("\nArea of interest: " + str(aoiArea) + " square miles.") 

  

        if arcpy.GetParameter(6) == False: 

            aoiArea = arcpy.GetParameter(7)                                                     # Enable a constant area size 

        aoiArea = round(aoiArea, 1) 

        arcpy.AddMessage("\n***Area used for PMP analysis: " + str(aoiArea) + " sqmi***") 

        return aoiArea 

 

    ########################################################################### 

    ##  Define dadLookup() function: 

    ##  The dadLookup() function determines the DAD value for the current storm 

    ##  and duration according to the basin area size.  The DAD depth is interpolated 

    ##  linearly between the two nearest areal values within the DAD table. 

    def dadLookup(stormLayer, duration, area):                  # dadLookup() accepts the current storm layer name (string), the 

current duration (string), and AOI area size (float) 

        #arcpy.AddMessage("\t\tfunction dadLookup() called.") 

        durField = "H_" + duration                              # defines the name of the duration field (eg., "H_06" for 6-hour) 

        dadTable = dadGDB + "\\" + stormLayer 

        rows = arcpy.SearchCursor(dadTable) 
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        try:        

            row = rows.next()                                       # Sets DAD area x1 to the value in the first row of the DAD table. 

            x1 = row.AREASQMI 

            y1 = row.getValue(durField) 

            xFlag = "FALSE"                                         # xFlag will remain false for basins that are larger than the largest DAD area. 

        except RuntimeError:                                        # return if duration does not exist in DAD table 

            return 

         

        row = rows.next() 

        i = 0 

        while row:                                                  # iterates through the DAD table - assiging the bounding values directly above and 

below the basin area size 

            i += 1 

            if row.AREASQMI < area: 

                x1 = row.AREASQMI 

                y1 = row.getValue(durField) 

            else: 

                xFlag = "TRUE"                                      # xFlag is switched to "TRUE" indicating area is within DAD range 

                x2 = row.AREASQMI 

                y2 = row.getValue(durField) 

                break 

             

            row = rows.next() 

        del row, rows, i 

 

        if xFlag == "FALSE": 

            x2 = area                                           # If x2 is equal to the basin area, this means that the largest DAD area is smaller than 

the basin and the resulting DAD value must be extrapolated.             

            arcpy.AddMessage("\t\tThe basin area size: " + str(area) + " sqmi is greater than the largest DAD area: " + str(x1) + " 

sqmi.\n\t\tDAD value is estimated by extrapolation.") 

            y = x1 / x2 * y1                                    # y (the DAD depth) is estimated by extrapolating the DAD area to the basin area 

size. 

            return y                                            # The extrapolated DAD depth (in inches) is returned. 

 

        # arcpy.AddMessage("\nArea = " + str(area) + "\nx1 = " + str(x1) + "\nx2 = " + str(x2) + "\ny1 = " + str(y1) + "\ny2 = " + 

str(y2)) 

 

        x = area                                                # If the basin area size is within the DAD table area range, the DAD depth is 

interpolated  

        deltax = x2 - x1                                        # to determine the DAD value (y) at area (x) based on next lower (x1) and next 

higher (x2) areas. 

        deltay = y2 - y1 

        diffx = x - x1 

 

        y = y1 + diffx * deltay / deltax 

 

        if x < x1: 

            arcpy.AddMessage("\t\tThe basin area size: " + str(area) + " sqmi is less than the smallest DAD table area: " + str(x1) + " 

sqmi.\n\t\tDAD value is estimated by extrapolation.") 

             

        return y                                                # The interpolated DAD depth (in inches) is returned. 

 

    ########################################################################### 

    ##  Define updatePMP() function: 

    ##  This function updates the 'PMP_XX_' and 'STORM_XX' fields of the PMP_Points 

    ##  feature class with the largest value from all analyzed storms stored in the 

    ##  pmpValues list. 

    def updatePMP(pmpValues, stormID, duration):                                                    # Accepts four arguments: pmpValues - 

largest adjusted rainfall for current duration (float list); stormID - driver storm ID for each PMP value (text list); and duration 

(string) 

        pmpfield = "PMP_" + duration 
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        stormfield = "STORM_" + duration 

        stormTextField = "STNAME_" + duration 

         

        gridRows = env.scratchGDB + "\\PMP_Points"                                                  # iterates through PMP_Points rows 

        i = 0 

        with arcpy.da.UpdateCursor(gridRows, (pmpfield, stormfield)) as cursor: 

            for row in cursor: 

                row[0] = pmpValues[i]                                                               # Sets the PMP field value equal to the Max Adj. 

Rainfall value (if larger than existing value). 

                row[1] = stormID[i]                                                                 # Sets the storm ID field to indicate the driving storm 

event 

                cursor.updateRow(row) 

                i += 1 

        del row, gridRows, pmpfield, stormfield, i 

        arcpy.AddMessage("\n\t" + duration + "-hour PMP values update complete. \n") 

        return 

     

    ###########################################################################         

    ##  The outputPMP() function produces raster GRID files for each of the PMP durations. 

    ##  Aslo, a space-delimited PMP_Distribition.txt file is created in the 'Text_Output' folder. 

    def outputPMP(type, area, outPath):  

        desc = arcpy.Describe(basin) 

        basinName = desc.baseName 

        pmpPoints = env.scratchGDB + "\\PMP_Points"                             # Location of 'PMP_Points' feature class which will 

provide data for output  

    

        outType = type[:1] 

        outArea = str(int(round(area,0))) + "sqmi" 

        outGDB = "PMP_"+ basinName + "_" + outArea +".gdb"                              

        if not arcpy.Exists(outPath + "\\" + outGDB):                           # Check to see if PMP_XXXXX.gdb already exists 

            arcpy.AddMessage("\nCreating output geodatabase '" + outGDB + "'") 

            dm.CreateFileGDB(outPath, outGDB) 

        arcpy.AddMessage("\nCopying PMP_Points feature class to " + outGDB + "...") 

        con.FeatureClassToFeatureClass(pmpPoints, outPath + "\\" + outGDB, type + "_PMP_Points_" + basinName + "_" + 

outArea) 

        pointFC = outPath + "\\" + outGDB + "\\" + type + "_PMP_Points_" + basinName + "_" + outArea     

        # addLayerMXD(pointFC)  # calls addLayerMDX function to add output to ArcMap session 

         

        arcpy.AddMessage("\nBeginning PMP Raster Creation...") 

 

        for dur in durList:                                                     # This code creates a raster GRID from the current PMP point layer 

            durField = "PMP_" + dur 

            outLoc = outPath + outGDB +"\\" + outType + "_" + dur + "_" + basinName + "_" + outArea 

            arcpy.AddMessage("\n\tInput Path: " + pmpPoints)     

            arcpy.AddMessage("\tOutput raster path: " + outLoc) 

            arcpy.AddMessage("\tField name: " + durField) 

            con.FeatureToRaster(pmpPoints, durField, outLoc, "0.025") 

            arcpy.AddMessage("\tOutput raster created...")                

        del durField, outLoc, dur 

 

        arcpy.AddMessage("\nPMP Raster Creation complete.") 

 

        if includeSubbasin:                                                 # Begin subbasin average calculations 

            subbasinID = [] 

            with arcpy.da.SearchCursor(basin, subbasinIDfield) as cursor:   # Create list of subbasin ID names 

                for row in cursor: 

                    subbasinID.append(row[0]) 

 

            subIDtype = arcpy.ListFields(basin, subbasinIDfield)[0].type    # Define the datatype of the subbasin ID field 

 

            if subIDtype != "String":                                       # Convert subbasin IDs to a string, if they are not already 

                subbasinID = [str(i) for i in subbasinID] 
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            subNameLen = max(map(len, subbasinID))                          # Define the length of the longest subbasin ID 

                 

            # arcpy.AddMessage("\nList of subbasins...\n" + "\n".join(subbasinID)) 

             

            arcpy.AddMessage("\nCreating Subbasin Summary Table...") 

            tableName = type + "_PMP_Subbasin_Average" + "_" + outArea 

            tablePath = outPath + "\\" + outGDB + "\\" + tableName 

            dm.CreateTable(outPath + "\\" + outGDB, tableName)              # Create blank table 

       

            dm.AddField(tablePath, "STORM_TYPE", "TEXT", "", "", 10, "Storm Type")          # Create "Storm Type" field 

            dm.AddField(tablePath, "SUBBASIN", "TEXT", "", "", subNameLen, "Subbasin")      # Create "Subbasin" field 

 

            cursor = arcpy.da.InsertCursor(tablePath, "SUBBASIN")           # Create Insert cursor and add a blank row to the table for 

each subbasin 

            for sub in subbasinID: 

                cursor.insertRow([sub]) 

            del cursor, sub 

             

            dm.CalculateField(tablePath, "STORM_TYPE", "'" + type + "'", "PYTHON_9.3")      # populate storm type field 

                       

            i = 0 

            for field in arcpy.ListFields(pmpPoints, "PMP_*"):              # Add fields for each PMP duration and calculate the 

subbasin averages 

                fieldName = field.name 

                arcpy.AddMessage("\n\tCalculating subbasin average for " + fieldName + " (weighted)...\n")                    

                dm.AddField(tablePath, fieldName, "DOUBLE", "", 2)          # Add duration field                 

                subAveList = [] 

                for subbasin in subbasinID:                                 # Loop through each subbasin                   

                    if subIDtype != "String":                               # Define an SQL expression that specifies the current subbasin 

                        sql_exp = """{0} = {1}""".format(arcpy.AddFieldDelimiters(basin, subbasinIDfield), subbasin) 

                    else: 

                        sql_exp = """{0} = '{1}'""".format(arcpy.AddFieldDelimiters(basin, subbasinIDfield), subbasin)    

                    dm.MakeFeatureLayer(basin, "subbasinLayer", sql_exp) 

                    outLayer = outPath + "\\" + outGDB + "\\subbasin_" + str(subbasin) 

                    subBasAve = basinAve("subbasinLayer", fieldName)        # Call the basAve() function passing the subbasin and 

duration field 

                    arcpy.AddMessage("\tSubbasin average for " + str(subbasin) + ":  " + str(subBasAve) + '"')  

                    subAveList.append(subBasAve)                            # Add subbasin average to list 

                p = 0 

                with arcpy.da.UpdateCursor(tablePath, fieldName) as cursor: # Update the subbasin average summary table with the 

subbasin averages 

                    for row in cursor: 

                        row = subAveList[p] 

                        cursor.updateRow([row]) 

                        p += 1 

                         

    ##            dm.CalculateField(tablePath, fieldName, fieldAve, "PYTHON_9.3")       # Assigns the basin average 

    ##            dur = durList[i]                                                      # following lines add alias field names to basin average table 

(ArcGIS 10.2.1 or later) 

    ##            if dur[0] == "0": 

    ##                dur = dur[1:] 

    ##            fieldAlias = dur + "-hour PMP"           

    ##            dm.AlterField(tablePath, fieldName, "#", fieldAlias) 

                i += 1 

            arcpy.AddMessage("\nSubbasin summary table complete.") 

 

        arcpy.AddMessage("\nCreating Basin Summary Table...") 

        tableName = type + "_PMP_Basin_Average" + "_" + outArea 

        tablePath = outPath + "\\" + outGDB + "\\" + tableName 

        dm.CreateTable(outPath + "\\" + outGDB, tableName)          # Create blank table 

        cursor = arcpy.da.InsertCursor(tablePath, "*")              # Create Insert cursor and add a blank row to the table 
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        cursor.insertRow([0]) 

        del cursor 

         

        dm.AddField(tablePath, "STORM_TYPE", "TEXT", "", "", 30, "Storm Type")          # Create "Storm Type" field 

        dm.CalculateField(tablePath, "STORM_TYPE", "'" + type + "'", "PYTHON_9.3")      # populate storm type field 

 

        i = 0 

        for field in arcpy.ListFields(pmpPoints, "PMP_*"):          # Add fields for each PMP duration and calculate the basin 

average 

            fieldName = field.name 

            fieldAve = basinAve(basin, fieldName)                   # Calls the basinAve() function - returns the average (weighted or not) 

            dm.AddField(tablePath, fieldName, "DOUBLE", "", 2)      # Add duration field 

            dm.CalculateField(tablePath, fieldName, fieldAve, "PYTHON_9.3")       # Assigns the basin average 

##            dur = durList[i]                                      # following lines add alias field names to basin average table (ArcGIS 10.2.1 or 

later) 

##            if dur[0] == "0": 

##                dur = dur[1:] 

##            fieldAlias = dur + "-hour PMP"           

##            dm.AlterField(tablePath, fieldName, "#", fieldAlias) 

            i += 1 

        arcpy.AddMessage("\nSummary table complete.") 

        basAveTables.append(tablePath)                               

 

##  The following lines export a .png image depth duration chart and PMP summary excel file to the output 

folder 

        if ddChart: 

            xValues = durList    #Get list of durations for chart 

            xValues = [int(i) for i in xValues]  #Convert duration list to integers 

            ax1 = plt.subplot2grid((1,1), (0,0)) #Create variable for subplot in chart 

            yValues = [] 

            pmpFields = [field.name for field in arcpy.ListFields(tablePath, "PMP_*")] # Selects PMP fields for yValues 

            with arcpy.da.SearchCursor(tablePath, pmpFields) as cursor:                # Adds PMP depths to yValues 

                yValues = next(cursor) 

            del cursor, pmpFields 

             

            stormFields = [field.name for field in arcpy.ListFields(pmpPoints, "Storm_*")] # Selects Controlling Storm fields 

            contStorms = []                             # List of controlling storms for a single duration 

            listOfContStorms = []                       # List of controlling storms for all durations (list of lists)            

            i = 0                                       # iterator (for "Storm_*" fields) 

            while i < len(stormFields):                      # iterates through controlling storm fields 

                with arcpy.da.SearchCursor(pmpPoints, stormFields) as cursor:    # Search cursor returns list of unique controlling 

storms 

                    contStorms = sorted({row[i] for row in cursor}) 

                listOfContStorms.append(contStorms)                         # Add unique storms for current duration to list of controlling 

stomrs              

                i += 1 

            del cursor 

 

            plt.plot(xValues,yValues)  #Creates chart 

            plt.xlabel('Storm Duration in Hours') 

            plt.ylabel('Rainfall Depth in Inches') 

            plt.title(basinName + " (" + outArea + ") " + type + ' Storm Basin Average PMP\nDepth Duration Chart')  

            ax1.grid(True)    #Creates grid lines in chart 

            yTop = max(yValues) + 1 

            ax1.set_ylim(top = yTop)  #Sets y axis values to match depths +1 1 

            ax1.set_xticks(xValues)  #Sets x axis values to match durations 

##            i = 0 

##            xy = zip(xValues, yValues) 

##            while i < len(stormFields):                     # iterates through controlling storm fields 

##                pointXY = xy[i] 

##                yLabel = '{0:.1f}'.format(yValues[i])       # round PMP depth to 1 decimal and convert to string 

##                stormLabel = str(listOfContStorms[i])       # convert controlling storm ID(s) to string   
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##                stormLabel = stormLabel.replace("u", "")    # remove unicode "u" 

##                stormLabel = stormLabel.replace("'", "")    # remove unicode "," 

##                stormLabel = stormLabel.replace("[", "")    # remove unicode "[" 

##                stormLabel = stormLabel.replace("]", "")    # remove unicode "]"    

##                #ax1.annotate(yLabel + '"\n' + stormLabel, xy=xy[i], textcoords='offset points', size=8, annotation_clip=True) 

##                ax1.annotate(yLabel + '"\n' + stormLabel, xy=xy[i], textcoords='data', size=8, annotation_clip=True) 

##                i += 1 

##            del xy 

 

            plt.savefig(outPath + "\\" + basinName + "_" + type + "_Depth_Duration_Chart.png") #Save image 

            plt.close()   #Close chart to remove from memory 

            arcpy.AddMessage("\nDepth Duration Chart exported to output folder.") 

            del xValues, yValues, #df, dfLimited 

            return 

        return 

 

    ###########################################################################         

    ##  The basin() returns the basin average PMP value for a given duration field. 

    ##  If the option for a weighted average is checked in the tool parameter the script 

    ##  will weight the grid point values based on proportion of area inside the basin. 

    def basinAve(aoiBasin, pmpField): 

        pmpPoints = env.scratchGDB + "\\PMP_Points"                                                         # Path of 'PMP_Points' scratch feature 

class        

        if weightedAve: 

            #arcpy.AddMessage("\tCalculating sub-basin average for " + pmpField + "(weighted)...") 

            vectorGridClip = env.scratchGDB + "\\VectorGridClip"                                            # Path of 'VectorGridClip' scratch 

feature class 

                 

            dm.MakeFeatureLayer(home + "\\Input\\Non_Storm_Data.gdb\\Vector_Grid", "vgLayer")                # make a feature 

layer of vector grid cells 

            dm.SelectLayerByLocation("vgLayer", "INTERSECT", aoiBasin)                                      # select the vector grid cells that 

intersect the aoiBasin polygon 

 

            an.Clip("vgLayer", aoiBasin, vectorGridClip)                        # clips aoi vector grid to 

basin 

            dm.AddField(pmpPoints, "WEIGHT", "DOUBLE")                                                      # adds 'WEIGHT' field to 

PMP_Points scratch feature class 

            dm.MakeFeatureLayer(vectorGridClip, "vgClipLayer")                                              # make a feature layer of basin 

clipped vector grid cells 

            dm.MakeFeatureLayer(pmpPoints, "pmpPointsLayer")                                                # make a feature layer of 

PMP_Points feature class 

 

            dm.AddJoin("pmpPointsLayer", "ID", "vgClipLayer", "ID")                                     # joins PMP_Points and 

vectorGridBasin tables 

            dm.CalculateField("pmpPointsLayer", "WEIGHT", "!vectorGridClip.Shape_Area!", "PYTHON_9.3")     # 

Calculates basin area proportion to use as weight for each grid cell. 

            dm.RemoveJoin("pmpPointsLayer", "vectorGridClip") 

 

            dm.SelectLayerByLocation("pmpPointsLayer", "INTERSECT", "vgLayer")             

                              

            na = arcpy.da.TableToNumPyArray("pmpPointsLayer",(pmpField, 'WEIGHT'))                          # Assign pmpPoints 

values and weights to Numpy array (na) 

            wgtAve = np.average(na[pmpField], weights=na['WEIGHT'])                                         # Calculate weighted average with 

Numpy average 

            del na 

            return round(wgtAve, 2) 

 

        else: 

            if includeSubbasin: 

                #arcpy.AddMessage("\tCalculating sub-basin average for " + pmpField + "(non-weighted)...") 

                vectorGridClip = env.scratchGDB + "\\VectorGridClip"                                            # Path of 'VectorGridClip' scratch 

feature class 
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                dm.MakeFeatureLayer(home + "\\Input\\Non_Storm_Data.gdb\\Vector_Grid", "vgLayer")                # make a feature 

layer of vector grid cells 

                dm.SelectLayerByLocation("vgLayer", "INTERSECT", aoiBasin)                                      # select the vector grid cells 

that intersect the aoiBasin polygon 

 

                dm.MakeFeatureLayer(pmpPoints, "pmpPointsLayer")                                                # make a feature layer of 

PMP_Points feature class 

 

                dm.SelectLayerByLocation("pmpPointsLayer", "INTERSECT", "vgLayer") 

                                           

                na = arcpy.da.TableToNumPyArray("pmpPointsLayer", pmpField)                                     # Assign pmpPoints values 

and weights to Numpy array (na) 

                fieldAve = np.average(na[pmpField])                                                             # Calculates aritmetic mean 

                del na 

                return round(fieldAve, 2)             

             

            else: 

                arcpy.AddMessage("\tCalculating basin average for " + pmpField + "(not weighted)...") 

                na = arcpy.da.TableToNumPyArray(pmpPoints, pmpField)                                            # Assign pmpPoints values to 

Numpy array (na)                      

                fieldAve = np.average(na[pmpField])                                                             # Calculates aritmetic mean 

                del na 

                return round(fieldAve, 2) 

 

    ###########################################################################         

    ##  This basinZone() function returns a list containing transposition zone ID 

    ##  (as an integer) 

 

 

    def basinZone(bas):  ## This function returns the basin location transposition zone 

        tempBasin = env.scratchGDB + "\\tempBasin" 

        tempCentroid = env.scratchGDB + "\\tempCentroid" 

        joinFeat = home + "\\Input\\Non_Storm_Data.gdb\\Vector_Grid" 

        joinOutput = env.scratchGDB + "\\joinOut" 

        dm.Dissolve(bas, tempBasin) 

        desc = arcpy.Describe(tempBasin) 

        sr = desc.spatialReference 

        #dm.FeatureToPoint(tempBasin, tempCentroid, "INSIDE") 

 

        dm.CreateFeatureclass(env.scratchGDB,"tempCentroid","POINT",spatial_reference = sr) 

        with arcpy.da.InsertCursor(tempCentroid, "SHAPE@XY") as iCur: 

            with arcpy.da.SearchCursor(tempBasin,"SHAPE@") as sCur: 

                for sRow in sCur: 

                    cent = sRow[0].centroid          # get the centroid 

                    iCur.insertRow([(cent.X,cent.Y)])# write it to the new feature class 

         

        an.SpatialJoin(tempCentroid, joinFeat, joinOutput) 

        centZone = arcpy.da.SearchCursor(joinOutput, ("TRANS_ZONE",)).next()[0] 

        del tempBasin, tempCentroid, joinFeat, joinOutput, desc, sr 

        return (centZone) 

  

    ###########################################################################         

    ##  The temporalDist() functions applies the temporal distributions scenarios 

    ##  to PMP.  

 

 

    def temporalDistControlStorm_06hr(stormType, outPath, location, areaSize, basinName):                         # Local Storm 6-hr 

Temporal Distributions Function 

 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize 
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        basinPMPPoints = outPath + "\\" + stormType + "_PMP_Points_" + basinName + "_" + areaSize                                # 

Location of basin average PMP table 

        controlStormTable = home + 

"\\Input\\Non_Storm_Data.gdb\\CONTROLLING_STORM_TEMPORAL_DISTRIBUTIONS_06" 

        arcpy.AddMessage(stormType + " Storm - " + dur + "-hour Controlling Storm PMP Temporal Distributions***") 

        outTable = outPath + "\\Controlling_Storms_Temporal_Distributions_" + dur      

        pointsArray = arcpy.da.TableToNumPyArray(basinPMPPoints, "Storm_" + dur) 

        arrayList = [] 

        for r in pointsArray: 

            arrayList.append(r[0]) 

        distributionList = np.unique(arrayList).tolist() 

        controlPatterns = [f.name for f in arcpy.ListFields(controlStormTable)] 

        TF = any(item in distributionList for item in controlPatterns) 

        if TF == True: 

            map = arcpy.FieldMappings() 

            fm = arcpy.FieldMap() 

            fm.addInputField(controlStormTable, "TIMESTEP") 

            map.addFieldMap(fm) 

            fm2 = arcpy.FieldMap() 

            fm2.addInputField(controlStormTable, "MINUTE") 

            map.addFieldMap(fm2) 

            for field in distributionList: 

                fm3 = arcpy.FieldMap() 

                fm3.addInputField(controlStormTable, field) 

                map.addFieldMap(fm3) 

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            arcpy.TableToTable_conversion(controlStormTable, outPath, "Controlling_Storms_Temporal_Distributions_" + dur, "", 

map)                                # Copy 6-hour temporal dist. factors table to output location 

            sixHour = arcpy.da.SearchCursor(basinPMP, ("PMP_06",)).next()[0]                    # Gets 6-hour PMP depth 

            for distribution in distributionList:                                   # Loops thourgh each 6-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                with arcpy.da.UpdateCursor(outTable, distribution) as cursor:                   # Cursor to apply temporal factor to 6-hour 

PMP 

                    for row in cursor: 

                        row[0] = round(row[0] * sixHour, 3) 

                        cursor.updateRow(row) 

                    del row, cursor 

             

            dists6hr = []       # add suffix to distribution pattern name 

            for dist in distributionList: 

                dists6hr.append(dist + " (6-hr)")             

             

            checkTemporal(stormType, outPath, outTable, dists6hr, dur, areaSize) 

        else: 

            arcpy.AddMessage("***Controlling Storm does not have any temporal distributions for this duration***") 

 

        return 

 

 

    def temporalDistControlStorm_24hr(stormType, outPath, location, areaSize, basinName):                         # Local Storm 6-hr 

Temporal Distributions Function 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize 

        basinPMPPoints = outPath + "\\" + stormType + "_PMP_Points_" + basinName + "_" + areaSize                                # 

Location of basin average PMP table 

        controlStormTable = home + 

"\\Input\\Non_Storm_Data.gdb\\CONTROLLING_STORM_TEMPORAL_DISTRIBUTIONS_24" 

 

        arcpy.AddMessage(stormType + " Storm - " + dur + "-hour Controlling Storm PMP Temporal Distributions***") 

        outTable = outPath + "\\Controlling_Storms_Temporal_Distributions_" + dur      

        pointsArray = arcpy.da.TableToNumPyArray(basinPMPPoints, "Storm_" + dur) 

        arrayList = [] 

        for r in pointsArray: 
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            arrayList.append(r[0]) 

        distributionList = np.unique(arrayList).tolist() 

        controlPatterns = [f.name for f in arcpy.ListFields(controlStormTable)] 

        TF = any(item in distributionList for item in controlPatterns) 

        if TF == True: 

            map = arcpy.FieldMappings() 

            fm = arcpy.FieldMap() 

            fm.addInputField(controlStormTable, "TIMESTEP") 

            map.addFieldMap(fm) 

            fm2 = arcpy.FieldMap() 

            fm2.addInputField(controlStormTable, "MINUTE") 

            map.addFieldMap(fm2) 

            for field in distributionList: 

                fm3 = arcpy.FieldMap() 

                fm3.addInputField(controlStormTable, field) 

                map.addFieldMap(fm3) 

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            arcpy.TableToTable_conversion(controlStormTable, outPath, "Controlling_Storms_Temporal_Distributions_" + dur, "", 

map)                                # Copy 6-hour temporal dist. factors table to output location 

            twentyfourHour = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]                    # Gets 6-hour PMP depth 

            for distribution in distributionList:                                   # Loops thourgh each 6-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                with arcpy.da.UpdateCursor(outTable, distribution) as cursor:                   # Cursor to apply temporal factor to 6-hour 

PMP 

                    for row in cursor: 

                        row[0] = round(row[0] * twentyfourHour, 3) 

                        cursor.updateRow(row) 

                    del row, cursor 

             

            dists24hr = []              # add suffix to distribution pattern name 

            for dist in distributionList: 

                dists24hr.append(dist + " (24-hr)") 

             

            checkTemporal(stormType, outPath, outTable, dists24hr, dur, areaSize) 

        else: 

            arcpy.AddMessage("***Controlling Storm does not have any temporal distributions for this duration***") 

 

        return 

 

 

    def temporalDistLS2(stormType, outPath, location, areaSize):                         # Local Storm 2-hr Temporal Distributions 

Function 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize 

 

        arcpy.AddMessage("\n***Local Storm - 2-hour PMP Temporal Distributions***") 

 

        temporalDistTable = home + "\\Input\\Non_Storm_Data.gdb\\LS_TEMPORAL_DISTRIBUTIONS_02hr"           # LS 

2hr Temporal distribution factors tables 

        distributionList = [field.name for field in arcpy.ListFields(temporalDistTable, "LS_2_*")]  # Create a list of 2-

hour distribution field names 

        outTable = outPath + "\\LS_Temporal_Distributions_2hr" 

        arcpy.AddMessage("\n\tCreating 2-hour temporal distribution table:...") 

        dm.Copy(temporalDistTable, outTable)                # 

Copy 2-hour temporal dist. factors table to output location 

        largestHour = arcpy.da.SearchCursor(basinPMP, ("PMP_01",)).next()[0]      # 

Calculate largest hour PMP 

        secondLargestHour = arcpy.da.SearchCursor(basinPMP, ("PMP_02",)).next()[0] - largestHour  # Calculate 2nd-

largest hour PMP 

        arcpy.AddMessage("\n\tLargest Hour: " + str(largestHour)) 

        arcpy.AddMessage("\tSecond Largest Hour: " + str(secondLargestHour)) 

        for distribution in distributionList:         # Loops 

thourgh each 2-hour temporal distribution 
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            arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

            if distribution == "LS_2_hour_Center": 

                accumPMP = 0 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:   # Cursor to evenly 

distribute half of 2nd largest hour over first 6 timesteps 

                    for row in cursor: 

                        if row[1] <= 6:          # Leave 

loop once a row containing a temporal dist. factor (ie, second 24h period) is reached 

                            accumPMP +=  secondLargestHour / 12 

                            #arcpy.AddMessage("\tAccumulated Rain: " + str(round(accumPMP, 3))) 

                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:   # Cursor to apply 

temporal factor to 1-hour PMP (steps 7-18) 

                    for row in cursor: 

                        if row[1] > 6 and row[1] <= 18:        # 

Constrain update to rows 19-24 (second hour) 

                            accumPMP = round((largestHour * row[0]) + (secondLargestHour / 2), 3) 

                            #arcpy.AddMessage("\tAccumulated Rain: " + str(accumPMP)) 

                            row[0] = accumPMP 

                            cursor.updateRow(row) 

                    del row, cursor 

                whereClause = distribution + " IS NULL" 

                with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:   # Cursor to evenly 

distribute half of 2nd largest hour over last 6 timesteps 

                    for row in cursor: 

                        accumPMP +=  secondLargestHour / 12 

                        #arcpy.AddMessage("\tAccumulated Rain: " + str(round(accumPMP, 3))) 

                        row[0] = round(accumPMP, 3) 

                        cursor.updateRow(row) 

                    del row, cursor, accumPMP, whereClause 

                #arcpy.AddMessage("\nCompleted temporal distribution for: " + distribution) 

            else:        

                arcpy.AddMessage("\t\tFirst hour...") 

                with arcpy.da.UpdateCursor(outTable, distribution) as cursor:     # Cursor 

to apply temporal factor to 1-hour PMP  

                    for row in cursor: 

                        if not row[0]: 

                            #arcpy.AddMessage("\tLeaving loop...") 

                            break 

                        #arcpy.AddMessage("\tAccumulated Rain: " + str(round(row[0] * largestHour,3))) 

                        row[0] = round(row[0] * largestHour,3) 

                        cursor.updateRow(row) 

                    del row, cursor 

                arcpy.AddMessage("\t\tSecond hour...") 

                accumPMP = largestHour 

                whereClause = distribution + " IS NULL" 

                with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:    # Cursor 

to evenly distribute 2nd largest hour 

                    for row in cursor: 

                        accumPMP += secondLargestHour / 12 

                        #arcpy.AddMessage("\tAccumulated Rain: " + str(round(accumPMP, 3))) 

                        row[0] = round(accumPMP, 3) 

                        cursor.updateRow(row) 

                    del row, cursor, accumPMP, whereClause 

         

        checkTemporal(stormType, outPath, outTable, distributionList, dur, areaSize) 

         

        del distribution, distributionList, largestHour, secondLargestHour 
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        return 

         

 

    def temporalDistLS6(stormType, outPath, location, areaSize):                         # Local Storm 6-hr Temporal Distributions 

Function 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                # Location of basin 

average PMP table 

 

        if stormType == "Local": 

            arcpy.AddMessage("\n***Local Storm - 6-hour PMP Temporal Distributions***") 

 

            temporalDistTable_6hr = home + "\\Input\\Non_Storm_Data.gdb\\LS_TEMPORAL_DISTRIBUTIONS_06HR"  # 6-hour 

Temporal distribution factors table 

            outTable = outPath + "\\LS_Temporal_Distributions_6hr"        

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            dm.Copy(temporalDistTable_6hr, outTable)                                # Copy 6-hour temporal dist. factors table to output 

location 

            distributionList = [field.name for field in arcpy.ListFields(temporalDistTable_6hr, "LS*")]     # Create a list of 6-hour 

distribution field names 

            arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 

            sixHour = arcpy.da.SearchCursor(basinPMP, ("PMP_06",)).next()[0]                    # Gets 6-hour PMP depth 

            for distribution in distributionList:                                   # Loops thourgh each 6-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                with arcpy.da.UpdateCursor(outTable, distribution) as cursor:                   # Cursor to apply temporal factor to 6-hour 

PMP 

                    for row in cursor: 

                        row[0] = round(row[0] * sixHour, 3) 

                        cursor.updateRow(row) 

                    del row, cursor 

            checkTemporal(stormType, outPath, outTable, distributionList, dur, areaSize) 

        return 

 

 

    def temporalDist_24hr(stormType, outPath, location, areaSize):                           # General/Cool Season Storm 24-hr Temporal 

Distributions Function 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                # Location of basin 

average PMP table 

 

        if stormType == "General": 

            arcpy.AddMessage("\n***" + stormType + " Storm - 24hr PMP Temporal Distributions***") 

            temporalDistTable_24hr = home + "\\Input\\Non_Storm_Data.gdb\\GS_TEMPORAL_DISTRIBUTIONS_24HR"    # 

General Storm Temporal distribution factors table 

            outTable = outPath + "\\GS_Temporal_Distributions_24hr" 

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            dm.Copy(temporalDistTable_24hr, outTable)                                   # Copy temporal dist. factors table to output location 

            distributionList = [field.name for field in arcpy.ListFields(temporalDistTable_24hr, "GS*")]        # Create a list of 24-

hour distribution field names 

            arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 

            twentyfourHour = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]                 # Gets 24-hour PMP depth 

            for distribution in distributionList:                                   # Loops through each 24-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                with arcpy.da.UpdateCursor(outTable, distribution) as cursor:                   # Cursor to apply temporal factor to 24-hour 

PMP 

                    for row in cursor: 

                        row[0] = round(row[0] * twentyfourHour, 3) 

                        cursor.updateRow(row) 

                    del row, cursor         

            checkTemporal(stormType, outPath, outTable, distributionList, dur, areaSize) 

 

        if stormType == "CoolSeason": 

            arcpy.AddMessage("\n***" + stormType + " Storm - 24hr PMP Temporal Distributions***") 
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            temporalDistTable_24hr = home + "\\Input\\Non_Storm_Data.gdb\\CS_TEMPORAL_DISTRIBUTIONS_24HR"    # 

Cool Season Storm Temporal distribution factors table 

            outTable = outPath + "\\CS_Temporal_Distributions_24hr" 

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            dm.Copy(temporalDistTable_24hr, outTable)                                   # Copy temporal dist. factors table to output location 

            distributionList = [field.name for field in arcpy.ListFields(temporalDistTable_24hr, "CS*")]        # Create a list of 24-hour 

distribution field names 

            arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 

            twentyfourHour = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]                 # Gets 24-hour PMP depth 

            for distribution in distributionList:                                   # Loops thourgh each 24-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                with arcpy.da.UpdateCursor(outTable, distribution) as cursor:                   # Cursor to apply temporal factor to 24-hour 

PMP 

                    for row in cursor: 

                        row[0] = round(row[0] * twentyfourHour, 3) 

                        cursor.updateRow(row) 

                    del row, cursor         

            checkTemporal(stormType, outPath, outTable, distributionList, dur, areaSize) 

        return 

 

 

    def temporalDist_48hr(stormType, outPath, location, areaSize):                          # General/Cool Season Storm 48-hr Temporal 

Distributions Function 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                # Location of basin 

average PMP table 

 

        if stormType == "General": 

            arcpy.AddMessage("\n***" + stormType + " Storm - 48hr PMP Temporal Distributions***") 

 

            temporalDistTable_48hr = home + "\\Input\\Non_Storm_Data.gdb\\GS_TEMPORAL_DISTRIBUTIONS_48HR"    # 

General Storm Temporal distribution factors table 

            outTable = outPath + "\\GS_Temporal_Distributions_48hr"  

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            dm.Copy(temporalDistTable_48hr, outTable)                                   # Copy temporal dist. factors table to output location 

            distributionList = [field.name for field in arcpy.ListFields(temporalDistTable_48hr, "GS*")]        # Create a list of 48-

hour distribution field names 

            arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 

 

            largest24 = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]                          # Calculate largest 24-hour period 

PMP 

            second24 = (arcpy.da.SearchCursor(basinPMP, ("PMP_48",)).next()[0] - largest24)/2            # Calculate the next largest 

24-hr period PMP and divide by 2 

 

            arcpy.AddMessage("\n\tLargest 24-hour Period: " + str(largest24)) 

            arcpy.AddMessage("\tFirst 12-hour: " + str(second24)) 

            arcpy.AddMessage("\tLast 12-hour: " + str(second24)) 

 

         

            for distribution in distributionList:                                   # Loops thourgh each 24-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                arcpy.AddMessage("\t\tFirst 12-hour Period...") 

                accumPMP = 0 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:             # Cursor to evenly distribute 

half of 2nd largest 24-hr into first 12 hours 

                    for row in cursor: 

                        if row[1] <= 48:                                        # Leave loop once a row containing a temporal dist. factor (ie, first 12h 

period) is reached 

                            accumPMP +=  second24 / 48 

                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 
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                arcpy.AddMessage("\t\tLargest 24-hour Period...") 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:             # Cursor to apply temporal 

factors to largest 24-hour PMP 

                    for row in cursor: 

                        if row[1] > 48 and row[1] <= 144:                               # Constrain update to rows 49-144 (second 24hr period) 

                            accumPMP = (largest24 * row[0]) + second24 

                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 

                     

                arcpy.AddMessage("\t\tLast 12-hour Period...") 

                whereClause = distribution + " IS NULL" 

                with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:              # Cursor to evenly distribute half 

of 2nd largest 24-hr into last 12 hours 

                    for row in cursor: 

                        accumPMP +=  second24 / 48 

                        row[0] = round(accumPMP, 3) 

                        cursor.updateRow(row) 

                    del row, cursor, accumPMP, whereClause 

            checkTemporal(stormType, outPath, outTable, distributionList, dur, areaSize) 

 

        if stormType == "CoolSeason": 

            arcpy.AddMessage("\n***" + stormType + " Storm - 48hr PMP Temporal Distributions***") 

 

            temporalDistTable_48hr = home + "\\Input\\Non_Storm_Data.gdb\\CS_TEMPORAL_DISTRIBUTIONS_48HR"    # 

Cool Season Storm Temporal distribution factors table 

            outTable = outPath + "\\CS_Temporal_Distributions_48hr" 

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            dm.Copy(temporalDistTable_48hr, outTable)                                   # Copy temporal dist. factors table to output location 

            distributionList = [field.name for field in arcpy.ListFields(temporalDistTable_48hr, "CS*")]        # Create a list of 48-hour 

distribution field names 

            arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 

 

            largest24 = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]                          # Calculate largest 24-hour period 

PMP 

            second24 = (arcpy.da.SearchCursor(basinPMP, ("PMP_48",)).next()[0] - largest24)/2            # Calculate the third largest 

12-hr period PMP and divide by 2 

 

 

            arcpy.AddMessage("\n\tLargest 24-hour Period: " + str(largest24)) 

            arcpy.AddMessage("\tFirst 12-hour: " + str(second24)) 

            arcpy.AddMessage("\tLast 12-hour: " + str(second24)) 

 

         

            for distribution in distributionList:                                   # Loops thourgh each 24-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                arcpy.AddMessage("\t\tFirst 12-hour Period...") 

                accumPMP = 0 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:             # Cursor to evenly distribute 

half of 2nd largest 24-hour PMP to first 12 hours 

                    for row in cursor: 

                        if row[1] <= 48:                                        # Leave loop once a row containing a temporal dist. factor (ie, first 12h 

period) is reached 

                            accumPMP +=  second24 / 48 

                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 

 

                arcpy.AddMessage("\t\tLargest 24-hour Period...") 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:             # Cursor to apply temporal 

factors to largest 24-hour PMP 

                    for row in cursor: 
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                        if row[1] > 48 and row[1] <= 144:                               # Constrain update to rows 49-144 (second 24hr period) 

                            accumPMP = (largest24 * row[0]) + second24 

                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 

                     

                arcpy.AddMessage("\t\tLast 12-hour Period...") 

                whereClause = distribution + " IS NULL" 

                with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:              # Cursor to evenly distribute half 

of 2nd largest 24-hr into last 12 hours 

                    for row in cursor: 

                        accumPMP +=  second24 / 48 

                        row[0] = round(accumPMP, 3) 

                        cursor.updateRow(row) 

                    del row, cursor, accumPMP, whereClause 

 

            checkTemporal(stormType, outPath, outTable, distributionList, dur, areaSize) 

        return 

 

 

    def temporalDist_72hr(stormType, outPath, location, areaSize):                          # General/Cool Seaon Storm 72-hr Temporal 

Distributions Function 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                # Location of basin 

average PMP table 

 

        if stormType == "General": 

            arcpy.AddMessage("\n***" + stormType + " Storm - 72hr PMP Temporal Distributions***") 

            temporalDistTable_72hr = home + "\\Input\\Non_Storm_Data.gdb\\GS_TEMPORAL_DISTRIBUTIONS_72HR"    # 

General Storm Temporal distribution factors table 

            outTable = outPath + "\\GS_Temporal_Distributions_72hr" 

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            dm.Copy(temporalDistTable_72hr, outTable)                                   # Copy temporal dist. factors table to output location 

            distributionList = [field.name for field in arcpy.ListFields(temporalDistTable_72hr, "GS*")]        # Create a list of 72-

hour distribution field names 

            arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 

         

            largest24 = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]                                                          # Calculate 

largest 24-hour period PMP 

            second24 = arcpy.da.SearchCursor(basinPMP, ("PMP_48",)).next()[0] - largest24           # Calculate 2nd-largest 24-hour 

period PMP 

            third24 = arcpy.da.SearchCursor(basinPMP, ("PMP_72",)).next()[0] - arcpy.da.SearchCursor(basinPMP, 

("PMP_48",)).next()[0]   # Calculate 3rd-largest 24-hour period PMP 

 

            arcpy.AddMessage("\n\tLargest 24-hour: " + str(largest24)) 

            arcpy.AddMessage("\tSecond largest 24-hour: " + str(second24)) 

            arcpy.AddMessage("\tThird largest 24-hour: " + str(third24)) 

         

            for distribution in distributionList:                                   # Loops thourgh each 72-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                arcpy.AddMessage("\t\tFirst 24-hour Period...") 

                accumPMP = 0 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:             # Cursor to evenly distribute 2nd 

largest 24-hour 

                    for row in cursor: 

                        if row[1] <= 96:                                        # Leave loop once a row containing a temporal dist. factor (ie, second 

24h period) is reached 

                            accumPMP +=  second24 / 96 

                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 

 

                arcpy.AddMessage("\t\tSecond 24-hour Period...") 
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                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:             # Cursor to apply temporal 

factors to largest 24-hour PMP 

                    for row in cursor: 

                        if row[1] > 96 and row[1] <= 192:                               # Constrain update to rows 97-192 (second 24hr period) 

                            accumPMP = (largest24 * row[0]) + second24 

                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 

                     

                arcpy.AddMessage("\t\tThird 24-hour Period...") 

                whereClause = distribution + " IS NULL" 

                with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:              # Cursor to evenly distribute 3nd 

largest hour over remaining empty rows 

                    for row in cursor: 

                        accumPMP +=  third24 / 96 

                        row[0] = round(accumPMP, 3) 

                        cursor.updateRow(row) 

                    del row, cursor, accumPMP, whereClause 

            checkTemporal(stormType, outPath, outTable, distributionList, dur, areaSize) 

 

        if stormType == "CoolSeason": 

            arcpy.AddMessage("\n***" + stormType + " Storm - 72hr PMP Temporal Distributions***") 

            temporalDistTable_72hr = home + "\\Input\\Non_Storm_Data.gdb\\CS_TEMPORAL_DISTRIBUTIONS_72HR"    # 

Cool Season Storm Temporal distribution factors table 

            outTable = outPath + "\\CS_Temporal_Distributions_72hr" 

            arcpy.AddMessage("\n\tCreating temporal distribution table:...") 

            dm.Copy(temporalDistTable_72hr, outTable)                                   # Copy temporal dist. factors table to output location 

            distributionList = [field.name for field in arcpy.ListFields(temporalDistTable_72hr, "CS*")]        # Create a list of 72-hour 

distribution field names 

            arcpy.AddMessage("\n\tDistribution Field Names: " + str(distributionList)) 

         

            largest24 = arcpy.da.SearchCursor(basinPMP, ("PMP_24",)).next()[0]                                                          # Calculate 

largest 24-hour period PMP 

            second24 = arcpy.da.SearchCursor(basinPMP, ("PMP_48",)).next()[0] - largest24           # Calculate 2nd-largest 24-hour 

period PMP 

            third24 = arcpy.da.SearchCursor(basinPMP, ("PMP_72",)).next()[0] - arcpy.da.SearchCursor(basinPMP, 

("PMP_48",)).next()[0]   # Calculate 3rd-largest 24-hour period PMP 

 

            arcpy.AddMessage("\n\tLargest 24-hour: " + str(largest24)) 

            arcpy.AddMessage("\tSecond largest 24-hour: " + str(second24)) 

            arcpy.AddMessage("\tThird largest 24-hour: " + str(third24)) 

         

            for distribution in distributionList:                                   # Loops thourgh each 24-hour temporal distribution 

                arcpy.AddMessage("\n\tApplying temporal distribution for: " + distribution) 

                arcpy.AddMessage("\t\tFirst 24-hour Period...") 

                accumPMP = 0 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:             # Cursor to evenly distribute 2nd 

largest hour 

                    for row in cursor: 

                        if row[1] <= 96:                                        # Leave loop once a row containing a temporal dist. factor (ie, second 

24h period) is reached 

                            accumPMP +=  second24 / 96 

                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 

 

                arcpy.AddMessage("\t\tSecond 24-hour Period...") 

                with arcpy.da.UpdateCursor(outTable, [distribution, "TIMESTEP"]) as cursor:             # Cursor to apply temporal 

factors to largest 24-hour PMP 

                    for row in cursor: 

                        if row[1] > 96 and row[1] <= 192:                               # Constrain update to rows 97-192 (second 24hr period) 

                            accumPMP = (largest24 * row[0]) + second24 
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                            row[0] = round(accumPMP, 3) 

                            cursor.updateRow(row) 

                    del row, cursor 

                     

                arcpy.AddMessage("\t\tThird 24-hour Period...") 

                whereClause = distribution + " IS NULL" 

                with arcpy.da.UpdateCursor(outTable, distribution, whereClause) as cursor:              # Cursor to evenly distribute 3nd 

largest hour over remaining empty rows 

                    for row in cursor: 

                        accumPMP +=  third24 / 96 

                        row[0] = round(accumPMP, 3) 

                        cursor.updateRow(row) 

                    del row, cursor, accumPMP, whereClause 

 

            checkTemporal(stormType, outPath, outTable, distributionList, dur, areaSize) 

        return 

 

 

    ##  This portion of the code checks to make sure none of the temporal distributions 

    ##  are exceeding the PMP values for any durations.  It adds a table to the output  

    ##  folder called CheckTemporal. 

##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

 

    def checkTemporal(stormType, outPath, TemporalTable, distributionFields, dur, areaSize): 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + areaSize                                # Location of basin 

average PMP table 

        pmpFields = [field.name for field in arcpy.ListFields(basinPMP, "PMP_*")]                               # PMP duration run 

        temporalFields = [field.name for field in arcpy.ListFields(TemporalTable)] 

        table = arcpy.Describe(TemporalTable) 

        tableName = table.name 

         

         

        pmp = []                                                                                                #Creates empty list and updates with PMP values for 

each duration run 

        i = 0 

        while i < len(pmpFields): 

            with arcpy.da.SearchCursor(basinPMP,pmpFields) as cursor: 

                for row in cursor: 

                    pmp.append(row[i]) 

                    i += 1 

        del i, cursor 

 

        checkTable = outPath + "\\Temporal_Distribution_Check_" + stormType 

        arcpy.AddMessage("\nCheckTable: "  + checkTable) 

        maxFields = []                                                                                          #Create Max fields for each duration 

        checkFields = []                                                                                        #Create Check fields for each duration 

        if arcpy.Exists(checkTable): 

            with arcpy.da.InsertCursor(checkTable, "PATTERN") as cursor: 

                for val in distributionFields: 

                    cursor.insertRow([val]) 

            i = 0                                                                                                   #Populate fields 

            for pmpField in pmpFields: 

                with arcpy.da.UpdateCursor(checkTable, pmpField) as cursor: 

                    for row in cursor: 

                        row = pmp[i] 

                        cursor.updateRow([row]) 

                    i += 1 

            del i, cursor    

        else: 
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            checkTable = dm.CreateTable(outPath, "Temporal_Distribution_Check_" + stormType)                       #Creates table in 

output folder, adds field, and populates field with distributions 

            dm.AddField(checkTable, "PATTERN", "TEXT", "", "", 50) 

            with arcpy.da.InsertCursor(checkTable, "PATTERN") as cursor: 

                for val in distributionFields: 

                    cursor.insertRow([val]) 

            for maxField in pmpFields: 

                newField = maxField.replace("PMP","MAX") 

                maxFields.append(newField) 

            del newField 

            for checkField in pmpFields: 

                newField = checkField.replace("PMP","CHECK") 

                checkFields.append(newField) 

            del newField 

            i = 0                                                                                                   #Populate fields 

            for pmpField in pmpFields: 

                dm.AddField(checkTable, pmpField, "DOUBLE", "", "", 50) 

                dm.AddField(checkTable, maxFields[i], "DOUBLE", "", "", 50) 

                dm.AddField(checkTable, checkFields[i], "TEXT", "", "", 50) 

                with arcpy.da.UpdateCursor(checkTable, pmpField) as cursor: 

                    for row in cursor: 

                        row = pmp[i] 

                        cursor.updateRow([row]) 

                    i += 1 

            del i, cursor 

 

        step = arcpy.da.SearchCursor(TemporalTable,("MINUTE",)).next()[0]    

        if step == 15: 

            dic = {"01": 4, "02": 8, "03": 12, "04": 16, "05": 20, "06": 24, "12": 48, "24": 96, "48": 192, "72": 288, "96": 384, "120": 

480}  # Dictionary to convert durations into 15-minute timesteps 

        elif step == 5: 

            dic = {"01": 12, "02": 24, "03": 36, "04": 48, "05": 60, "06": 72, "12": 144, "24": 288, "48": 576, "72": 864, "96": 1152, 

"120": 1440} 

        elif step == 60: 

            dic = {"01": 1, "02": 2, "03": 3, "04": 4, "05": 5, "06": 6, "12": 12, "24": 24, "48": 48, "72": 72, "96": 96, "120": 120} 

        # arcpy.AddMessage(str(step) + " Minute distribution Pattern.....") 

 

        maxFields = [field.name for field in arcpy.ListFields(checkTable, "MAX*")] 

        i = 0                                        # Calculates incremental PMP depths from temporal distribution and gets maximum rainfall 

for each duration run 

        d = durList.index(dur) + 1 

        for dur in durList[:d]: 

            k = dic[dur] 

            p = 3          # Skip first 3 fields in 

temporaltable (objectID, Timesteps, minutes) 

            for distribution in distributionFields: 

                incPMP = [] 

                previousRow = 0 

                with arcpy.da.SearchCursor(TemporalTable, temporalFields) as cursor: 

                    for row in cursor: 

                        increment = row[p] - previousRow 

                        previousRow = row[p] 

                        incPMP.append(increment) 

                na = np.array(incPMP) 

                sumList = np.convolve(na,np.ones(k)) 

                maxPMP = max(sumList) 

                maximumPMP = math.trunc(maxPMP * 10 ** 2.0) / 10 ** 2.0 

                p += 1 

 

                x = 0 

                with arcpy.da.UpdateCursor(checkTable, ["PATTERN", maxFields[i]]) as cursor:                # Updates table with max 

values 
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                    for row in cursor: 

                        if row[0] == distribution: 

                            row[1] = maximumPMP 

                            x += 1 

                            cursor.updateRow(row) 

            i += 1 

        del i, k, cursor, x 

        with arcpy.da.UpdateCursor(checkTable, '*') as cursor:                              # Compares PMP values to max values for each 

duration.  If PMP values are larger update check field with PASS if not FAIL 

            for row in cursor: 

                rec = dict(zip(cursor.fields, row)) 

                arcpy.AddMessage("\n\n\tChecking temporally distributed depth-durations against PMP: " + rec['PATTERN'] + "\n") 

                for k, v in rec.items(): 

                    if not k.startswith('PMP_'): 

                        continue 

                    _, n = k.split('_') 

                    try:            

   # This try/except skips comparisons for additional durations not present in current temporal pattern 

                        mx = rec['MAX_{}'.format(n)] 

                        rec['CHECK_{}'.format(n)] = 'FAIL' if v < mx else 'PASS' 

                    except: 

                        arcpy.AddMessage("\n\tDuration not present...") 

                        continue 

                    if rec['CHECK_{}'.format(n)] == 'PASS': 

                        arcpy.AddMessage("\t" + str(n) + "-hour \n\t\tPMP value is... " + str(v) + "  \n\t\tmax rainfall value is..." + str(mx) 

+ "\n\t\tThis distribution.... " + rec['CHECK_{}'.format(n)]) 

                    else: 

                        arcpy.AddMessage("\t" + str(n) + "-hour \n\t\tPMP value is... " + str(v) + "  \n\t\tmax rainfall value is..." + str(mx) 

+ "\n\t\tThis distribution.... " + rec['CHECK_{}'.format(n)]+ "\n\t\t**Max values for duration are exceeding PMP values. Use of 

this temporal distribtion not recommended.") 

                cursor.updateRow([rec[k] for k in cursor.fields]) 

        del cursor, k, v, rec 

        return 

 

 

    ###########################################################################         

    ##  The temporalCritStacked() function applies the critically stacked 

    ##  temporal distributions scenarios.  The function accepts the storm type, 

    ##  output .gdb path, AOI area size, PMP duration string (hours), and 

    ##  integer timestep duration (minutes). The function outputs a gdb table. 

 

 

    def temporalCritStacked(stormType, outPath, area, duration, timestep):                                # 

Function applied Critically Stacked temporal distribution 

        basinPMP = outPath + "\\" + stormType + "_PMP_Basin_Average_" + area                            # Location of basin average 

PMP table 

        if stormType == "Local" and duration == "06":                                                                                                    # These 

conditional statements define the field name based on storm type, PMP duration, and timestep duration  

            csField = "LS_" + duration + "_HOUR_" + str(timestep) + "MIN_CRIT_STACKED" 

        elif stormType == "General": 

            csField = "GS_" + duration + "_HOUR_" + str(timestep) + "MIN_CRIT_STACKED" 

        elif stormType == "CoolSeason": 

            csField = "CS_" + duration + "_HOUR_" + str(timestep) + "MIN_CRIT_STACKED" 

        else: 

            arcpy.AddMessage("\n***Invalid storm type: " + stormType) 

            return 

        arcpy.AddMessage("\n***" + duration + "-hour " + str(timestep) + "-min Critically Stacked Temporal Distribution***") 

        tableName = "Temporal_Distribution_" + duration + "hr_" + str(timestep) + "min_Crit_Stacked"                                # 

Output table name 

        tablePath = outPath + "\\" + tableName                                                                                      # Output table full path 

        pmpFields = [field.name for field in arcpy.ListFields(basinPMP, "PMP*")]                                                    #  Gets the 

"PMP_XX" field names from the basin avereage PMP table 
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        if duration == "06":                                                                                                        #  These conditional statements define 

the key durations needed to build the critically stacked patterns for the following durations... 

            keyDurations = [1, 2, 3, 4, 5, 6]                                                                                        

        elif duration == "12": 

            keyDurations = [1, 2, 3, 4, 5, 6, 12]             

        elif duration == "24": 

            keyDurations = [1, 2, 3, 4, 5, 6, 12, 24] 

        elif duration == "48": 

            keyDurations = [1, 2, 3, 4, 5, 6, 12, 24, 48] 

        elif duration == "72": 

            keyDurations = [1, 2, 3, 4, 5, 6, 12, 24, 48, 72] 

        elif duration == "96": 

            keyDurations = [1, 2, 3, 4, 5, 6, 12, 24, 48, 72, 96] 

        elif duration == "120": 

            keyDurations = [1, 2, 3, 4, 5, 6, 12, 24, 48, 72, 96, 120] 

        else: 

            arcpy.AddMessage("\n\t...Critically stacked temporal distribution not available for " + duration + "-hour duration.") 

            return         

        timestepLen = int(duration) * 60 // timestep                                                                                 # number of rows in output 

table      

        xValues = [0] 

        for i in keyDurations:                                                                                                      # defines the known x-values (xp) to be 

used in the interpolation 

            xVal = i * timestepLen / int(duration) 

            xValues.append(xVal) 

        del i, xVal         

        yValues = [0] 

        d = 0 

        for i in keyDurations:                                                                                                      #  defines the known y-values (fp) to be 

used in the interpolation 

            pmpDepth = arcpy.da.SearchCursor(basinPMP, pmpFields).next()[d] 

            yValues.append(pmpDepth) 

            d += 1 

        del d, i, pmpDepth    

 

        x = np.arange(0, timestepLen + 1, 1)                                                                                        #  defines the x points at which to 

interpolate values 

        xp = np.asarray(xValues)                                                                                                    #  np.asarray converts lists into 

numpy arrays 

        fp = np.asarray(yValues) 

        y = np.interp(x, xp, fp) 

        inc = [] 

        prevDepth = 0 

        i = 0 

        for depth in np.nditer(y):                                                                                                  #  populates incremental depths list 

'inc' with y array 

            inc.append(depth - prevDepth) 

            prevDepth = depth 

            i += 1 

        del i, prevDepth 

        periods = int(duration)                                                                                                     # defines number of periods (known 

hours) as the duration      

        periodLen = 60 // timestep                                                                                                   # defines number of timesteps 

(minutes) in each period 

        ranks = [] 

        stackRank = 1 

        i = 0 

        while i < periods:                                                                                                          # populat es list 'ranks' with a rank 

integer, one entry per period 

            ranks.append(stackRank) 

            stackRank += periodLen 
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            i += 1 

        del i 

 

        orderRanks = [] 

        orderRanks.insert(0, ranks.pop(0)) 

        for i in range (timestepLen // periodLen):                                                                                   ## orders the ranks according 

to critically stacked pattern.  Pulls 

            if ranks:                                                                                                               ## (p op()) the first rank from the ranks list 

and places it in the orderRanks 

                orderRanks.insert(0, ranks.pop(0))                                                                                  ## list. Places next two ranks at 

the beginning of the list 

            if ranks:                                                                                                               ## and the following at the end of the list.  

Repeats until ranks is empty. 

                orderRanks.insert(0, ranks.pop(0)) 

            if ranks: 

                orderRanks.append(ranks.pop(0)) 

        del i 

        orderRanks += [orderRanks.pop(0)] 

        if orderRanks[0] == max(orderRanks):                                                                                        ## Moves last rank to the end 

of of orderRanks list. 

            arcpy.AddMessage("\n*** moving first rank to last") 

            orderRanks.append(orderRanks.pop(max))       

        orderInc = [] 

        n = 0 

        for i in range(periods):                                                                                                    #  gets the nth largest increment where 

n is the ordered Rank. 

            for q in range(periodLen): 

                nthLargest = nlargest(orderRanks[n], inc)[-1] 

                orderInc.append(nthLargest) 

            n += 1 

        del n, i, q 

        cumulative = [] 

        prevInc = 0 

        for i in orderInc:                                                                                                          # Converts the incremental depths to 

cumulatove depths and places in cumulative list 

            value = round(i + prevInc, 3) 

            cumulative.append(value) 

            prevInc = i + prevInc 

            i += 1 

        del i, prevInc         

        timesteps = x.tolist()                                                                                                      #  Converts the timesteps array (x) to a 

list then removes the first zero entry 

        timesteps.pop(0) 

        minutes = [] 

        minutesInc = timestep 

        for i in range(timestepLen):                                                                                                # Constructs the minutes list to be 

used in output column based on timestep interval 

            minutes.append(minutesInc) 

            minutesInc += timestep 

        del i   

        dm.CreateTable(outPath, tableName)                                                                                          # Create the output 

geodatabase table 

        dm.AddField(tablePath, "TIMESTEP", "DOUBLE")                                                                                #  Create 

"TIMESTEP" field 

        dm.AddField(tablePath, "MINUTES", "DOUBLE")                                                                                 #  Create "MINUTES" 

field 

        dm.AddField(tablePath, csField, "DOUBLE")                                                                                   # Create cumulated 

rainfall field      

        zipped = zip(timesteps, minutes, cumulative)                                                                                #  Zip up lists of output items. 

        fields = ('TIMESTEP', 'MINUTES', csField)                                                                                   # Output table field names         

        arcpy.AddMessage("\n\tApplying temporal distribution for: " + csField) 
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        with arcpy.da.InsertCursor(tablePath, fields) as cursor:                                        # Cursor to 

populate output Critically Stacked table 

            for i in zipped: 

                cursor.insertRow(i) 

        del cursor, i 

        return 

 

 

    ########################################################################### 

    ##  This portion of the code iterates through each storm feature class in the 

    ##  'Storm_Adj_Factors' geodatabase (evaluating the feature class only within 

    ##  the Local, Tropical, or general feature dataset).  For each duration, 

    ##  at each grid point within the aoi basin, the transpositionality is 

    ##  confirmed.  Then the DAD precip depth is retrieved and applied to the 

    ##  total adjustement factor to yield the total adjusted rainfall.  This 

    ##  value is then sent to the updatePMP() function to update the 'PMP_Points' 

    ##  feature class. 

##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~##    

 

 

    desc = arcpy.Describe(basin)                                                        # Check to ensure AOI input shape is a Polygon. If not - exit.  

    basinShape = desc.shapeType 

    if desc.shapeType == "Polygon": 

        arcpy.AddMessage("\nBasin shape type: " + desc.shapeType) 

    else: 

        arcpy.AddMessage("\nBasin shape type: " + desc.shapeType) 

        arcpy.AddMessage("\nError: Input shapefile must be a polygon!\n") 

        sys.exit() 

     

    createPMPfc()                                                                       # Call the createPMPfc() function to create the PMP_Points feature 

class. 

 

    env.workspace = adjFactGDB                                                          # the workspace environment is set to the 

'Storm_Adj_Factors' file geodatabase 

 

    aoiSQMI = round(getAOIarea(),2)                                                     # Calls the getAOIarea() function to assign area of AOI 

shapefile to 'aoiSQMI' 

    if aoiSQMI > 100 and stormType is "Local": 

        arcpy.AddMessage("\n***Warning - Local storm PMP depths only valid for basins 100 square miles or smaller***") 

         

    stormList = arcpy.ListFeatureClasses("", "Point", stormType)                        # List all the total adjustment factor feature classes 

within the storm type feature dataset. 

    for dur in durList: 

        arcpy.AddMessage("\n*************************************************************\nEvaluating " + dur + "-

hour duration...") 

 

        pmpList = [] 

        driverList = [] 

        gridRows = arcpy.SearchCursor(env.scratchGDB + "\\PMP_Points") 

        try: 

            for row in gridRows: 

                pmpList.append(0.0)                                                         # creates pmpList of empty float values for each grid point to 

store final PMP values 

                driverList.append("STORM")                                                  # creates driverList of empty text values for each grid 

point to store final Driver Storm IDs 

            del row, gridRows 

        except UnboundLocalError: 

            arcpy.AddMessage("\n***Error: No data present within basin/AOI area.***\n") 

            sys.exit() 

 

        env.workspace = adjFactGDB 
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        for storm in stormList[:]: 

            arcpy.AddMessage("\n\tEvaluating storm: " + storm + "...")  

            arcpy.MakeFeatureLayer_management(storm, "stormLayer")                                    # creates a feature layer for the 

current storm 

            dm.SelectLayerByLocation("stormLayer", "HAVE_THEIR_CENTER_IN", "vgLayer")   # examines only the grid points 

that lie within the AOI 

            gridRows = arcpy.SearchCursor("stormLayer") 

            pmpField = "PMP_" + dur 

            i = 0 

            try: 

                dadPrecip = round(dadLookup(storm, dur, aoiSQMI),3) 

                arcpy.AddMessage("\t\t" + dur + "-hour DAD value:  " + str(dadPrecip) + chr(34)) 

            except TypeError:                                                           # In no duration exists in the DAD table - move to the next storm 

                arcpy.AddMessage("\t***Duration '" + str(dur) + "-hour' is not present for " + str(storm) + ".***\n") 

                continue     

            arcpy.AddMessage("\t\tComparing " + storm + " adjusted rainfall values against current driver values...") 

            transCounter = 0                                                    # Counter for number of grid points transposed to 

            for row in gridRows: 

                if row.TRANS == 1:                                              # Only continue if grid point is transpositionable ('1' is 

transpostionable, '0' is not). 

                    try:                                                        # get total adj. factor if duration exists 

                        transCounter += 1 

                        adjRain = round(dadPrecip * row.TAF,1) 

                        if adjRain > pmpList[i]: 

                            pmpList[i] = adjRain 

                            driverList[i] = storm 

                    except RuntimeError: 

                        arcpy.AddMessage("\t\t   *Warning*  Total Adjusted Raifnall value falied to set for row " + str(row.CNT)) 

                        break 

                    del adjRain  

                i += 1 

            if transCounter == 0: 

                arcpy.AddMessage("\t\tStorm not transposable to basin. Removing " + storm + " from list...\n") 

                stormList.remove(storm) 

            else: 

                arcpy.AddMessage("\t\tTransposed to " + str(transCounter) + "/" + str(i) + " grid points...\n") 

            del row, transCounter 

        del storm, gridRows, dadPrecip 

        updatePMP(pmpList, driverList, dur)              # calls function to update "PMP Points" feature class       

    del pmpList, stormList 

     

    arcpy.AddMessage("\n'PMP_Points' Feature Class 'PMP_XX' fields update complete for all '" + stormType + "' storms.") 

   

    outputPMP(stormType, aoiSQMI, outputPath)               # calls outputPMP() function 

    outArea = str(int(round(aoiSQMI,0))) + "sqmi" 

    outGDB = outLocation + "\\" + stormType + "\\PMP_" + desc.baseName + "_" + outArea + ".gdb" 

    basinName = desc.baseName 

     

    if runTemporal:                                          #Calls temporal distribution functions 

        centroidLocation = basinZone(basin) 

        arcpy.AddMessage("\nBasin Centroid Transposition Zone: " + str(centroidLocation)) 

 

        for dur in durList: 

            if stormType == "Local" and dur == "02": 

                temporalDistLS2(stormType, outGDB, centroidLocation, outArea) 

            if dur == "06": 

                temporalDistLS6(stormType, outGDB, centroidLocation, outArea) 

                temporalDistControlStorm_06hr(stormType, outGDB, centroidLocation, outArea, basinName) 

            if stormType == "Local" and dur == "06": 

                temporalCritStacked(stormType, outGDB, outArea, dur, 5) 

            if dur == "24": 

                temporalDist_24hr(stormType, outGDB, centroidLocation, outArea) 
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                temporalCritStacked(stormType, outGDB, outArea, dur, 15) 

                temporalDistControlStorm_24hr(stormType, outGDB, centroidLocation, outArea, basinName) 

            if dur == "48": 

                temporalDist_48hr(stormType, outGDB, centroidLocation, outArea) 

            if dur == "72": 

                temporalDist_72hr(stormType, outGDB, centroidLocation, outArea) 

 

 

    i = 0                                                                                   #Creates CSV files of all output tables 

    csvPath = outLocation + "\\" + stormType + "\\CSV_" + desc.baseName + "_" + outArea + "\\"  

    if not arcpy.Exists(outLocation + "\\" + stormType + "\\CSV_" + desc.baseName + "_" + outArea): 

        arcpy.CreateFolder_management(outLocation + "\\" + stormType + "\\", "CSV_" + desc.baseName + "_" + outArea) 

    arcpy.AddMessage("\n\t...Creating output tables as CSV files.. ") 

    env.workspace = outGDB 

    outTables = arcpy.ListTables() 

    for t in outTables: 

        arcpy.TableToTable_conversion(t, csvPath, outTables[i] + ".csv") 

        i += 1 

    xmlFiles = os.listdir(csvPath) 

    for file in xmlFiles: 

        if file.endswith(".xml"): 

            os.remove(os.path.join(csvPath,file)) 

    return 

##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~##    

 

 

def outputBasAveTable(): 

    arcpy.AddMessage("\nCreating basin average summary table.\n") 

    tableList = basAveTables 

    for table in tableList: 

        arcpy.AddMessage("\t\tMerging tables... " + table) 

 

    dm.Merge(basAveTables, outputTable) 

    ##  addLayerMXD(outputTable)  adds output table to ArcMap session 

 

    return 

##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~## 

 

 

def addLayerMXD(addFC): 

    desc = arcpy.Describe(addFC) 

    layerName = desc.name 

    arcpy.AddMessage("\nAdding " + layerName + " table to current MXD...") 

    if desc.dataType == "FeatureClass": 

        dm.MakeFeatureLayer(addFC, layerName) 

        layer = arcpy.mapping.Layer(layerName) 

        arcpy.mapping.AddLayer(df, layer) 

        arcpy.AddMessage("\n" + layerName + " added to current map session.\n") 

    elif desc.dataType == "Table": 

        layer = arcpy.mapping.TableView(desc.catalogPath) 

        arcpy.mapping.AddTableView(df, layer) 

        arcpy.AddMessage("\n" + layerName + " added to current map session.\n")     

    elif desc.dataType == "ArcInfoTable":   

        layer = arcpy.mapping.TableView(desc.catalogPath + ".dbf") 

        arcpy.mapping.AddTableView(df, layer) 

        arcpy.AddMessage("\n" + layerName + " added to current map session.\n")      

 

    del desc, layerName, layer 

    return 
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##~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~##      

 

 

if locDurations: 

    type = "Local" 

    durations = locDurations 

    dm.CreateFolder(outLocation, type) 

    outputPath = outLocation + "\\Local\\"   

    arcpy.AddMessage("\nRunning PMP analysis for storm type: " + type) 

    pmpAnalysis(basin, type, durations)          # Calls the pmpAnalysis() function to calculate the local storm PMP 

    arcpy.AddMessage("\nLocal storm analysis 

complete...\n*********************************************************************************************

************") 

 

if genDurations: 

    type = "General" 

    durations = genDurations 

    dm.CreateFolder(outLocation, type) 

    outputPath = outLocation + "\\General\\"   

    arcpy.AddMessage("\nRunning PMP analysis for storm type: " + type) 

    pmpAnalysis(basin, type, durations)          # Calls the pmpAnalysis() function to calculate the general storm PMP 

    arcpy.AddMessage("\nGeneral storm analysis 

complete...\n*********************************************************************************************

************") 

 

if coolDurations: 

    type = "CoolSeason" 

    durations = coolDurations 

    dm.CreateFolder(outLocation, type) 

    outputPath = outLocation + "\\CoolSeason\\"   

    arcpy.AddMessage("\nRunning PMP analysis for storm type: " + type) 

    pmpAnalysis(basin, type, durations)          # Calls the pmpAnalysis() function to calculate the Cool Season storm PMP 

    arcpy.AddMessage("\nCool season storm analysis 

complete...\n*********************************************************************************************

************") 

 

#if arcpy.Describe(outputTable).name: 

#    outputBasAveTable() 

 

#arcpy.RefreshTOC() 

#arcpy.RefreshActiveView() 

#del mxd, df 
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Appendix I 
PMP Version Log: Changes to Storm Database and 

Adjustment Factors 
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PMP Versions 

 
Version 1.0 – 1/25/2020 

• Created 3 Transposition zones.  Added transposition constraints to all storms 

• Initial run; included GTF upper limit of 1.50 and lower limit 0.50 

• MTF was set to 1 to remove from total adjustment factor. 

• Precipitation frequency values for Montana, Saskatchewan, and Manitoba were not 

available.  Used an average of the bordering NOAA Atlas 14 values for each. 

• (SPAS 1336_1) Springbrook, MT – Ran as a hybrid storm as both General and Local.  

Used 24hr precipitation frequency values from Wyoming mini analysis for both. 

General Storms 

• SPAS 1048_1 (Hokah, MN) – Moved to zone 1 

• SPAS 1206_1 (Big Rapids, MI) – Moved to zone 1 

• SPAS 1297_1 (Warroad, MN) – Moved to zone 1 

• SPAS 1325_1 (Savageton, WY) – Moved to zone 3 

• SPAS 1335_1 (Warrick, MT) – Moved to zones 2 & 3 

• SPAS 1337_1 (Parkman, SK) – NOAA Atlas 14 domain did not cover this storm center.  

Estimated from nearest values.  Moved to zones 1 & 2 

• SPAS 1433_1 (Collinsville, IL) – Moved to zone 1 

• SPAS 1502_1 (Veteran, AB) – Moved to zones 2 & 3 

• SPAS 1504_1 (Pelican Mountain, AB) – Moved to zone 2 

• SPAS 1527_1 (Ida Grove, IA) – Moved to zone 1 

• SPAS 1583_1 (Council Grove, KS) – Moved to zone 1 

• SPAS 1630_1 (Bolton, ONT) – Moved to zone 1 

• SPAS 1697_1 (Ironwood, MI) – Moved to zone 1 

• SPAS 1738_1 (Harlan, IA) – Moved to zone 1 

Hybrid Storms 

• SPAS 1183_1 (Edgerton, MO) – Moved to zones 1 & 2 

• SPAS 1228_1 (Fall River, KS) – Moved to zone 1 

• SPAS 1286_1 (Aurora College, IL) – Moved to zone 1 

• SPAS 1296_1 (Duluth, MN) – Moved to zones 1 & 2 

• SPAS 1336_1 (Springbrook, MT) – Moved to zones 2 & 3 

• SPAS 1699_1 (Hayward, WI) – Moved to zone 1 

• SPAS 1725_1 (Leonard, ND) – Moved to zones 1 & 2 

 

Local Storms 

• SPAS 1030_1 (David City, NE) – Moved to zones 1 & 2 

• SPAS 1033_1 (Ogallala, NE) – Moved to zones 2 & 3 
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• SPAS 1035_1 (Forest City, MN) – Moved to zone 1 

• SPAS 1036_1 (Pawnee Creek, CO) – Moved to zones 2 & 3 

• SPAS 1177_1 (Vanguard, SK) – Moved to zones 1, 2, & 3 

• SPAS 1209_1 (Wooster, OH) – Moved to zone 1 

• SPAS 1210_1 (Minneapolis, MN) – Moved to zones 1 & 2 

• SPAS 1220_1 (Dubuque, IA) – Moved to zone 1 

• SPAS 1226_1 (College Hill, OH) – Moved to zone 1 

• SPAS 1324_1 (Glen Ullin, ND) – Moved to zones 1, 2, & 3 

• SPAS 1334_1 (Buffalo Gap, SK) – Moved to zones 1, 2, & 3 

• SPAS 1426_1 (Cooper, MI) – Moved to zone 1 

• SPAS 1427_1 (Boyden, IA) – Moved to zone 1 

• SPAS 1434_1 (Holt, MO) – Moved to zone 1 

• SPAS 1673_1 (Harrow, ONT) – NOAA Atlas 14 domain did not cover this storm center.  

Estimated from nearest values.  Moved to zone 1 

• SPAS 1726_1 (Turtle River, ND) – Moved to zones 1, 2, & 3 

• SPAS 1727_1 (Drummond, WI) – Moved to zone 1 

• SPAS 1728_1 (Cross Plains, WI) – Moved to zone 1 

• SPAS 1729_1 (Fountain, MI) – Moved to zone 1 

• SPAS 1736_1 (Stanton, NE) – Moved to zones 1 & 2 

 

Version 1.a – 1/25/2020 

• Dewpoint rasters do not cover all grid points into Canada for SPAS 1210_1, 1226_1, 

1673_1, & 1726_1 when calculating MTF.  Extended Existing Isolines into Canada 

• Calculated MTF 

 

Version 2 – 2/12/2020 

• Based off version 1 

Local storms 

• Removed SPAS 1226_1 (College Hill, OH) from local storms for sensitivity 

• Added SPAS 1521_2 (Bassano, AB) to Local Storms.  Moved to zones 2 & 3 

• Added SPAS 1734_1 (Thief River Falls, MN) to local storms.  Moved to zones 1, 2, &3 

 

Hybrid storms 

• Limited SPAS 1336_1 (Springbrook, MT) to west of 99° W or greater than 1,500 ft 

elevation 

 

General storms 

• Added SPAS 1735_1 (Coldwater, MI) to general storms.  Moved to zones 1, 2, & 3 
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• Limited SPAS 1325_1 (Savageton, WY) to west of the Dakotas and south of 46° N 

• Limited SPAS 1206_1 (Big Rapids, MI) to east of 99° W 

 

Cool Season storms 

• Added cool season storms.  One storm type using 24-hr 100-yr precipitation frequency 

values.  Moved all storms to all zones.   

• Added SPAS 1245_1 (Ashland, WI) 

• Added SPAS 1698_1 (Bellefontaine, OH) 

• Added SPAS 1732_1 (Madison, SD) 

• Added SPAS 1733_1 (Groton, SD) 

• Added SPAS 1737_1 (Chan Gurney, SD) 

• Added SPAS 1739_1 (Iron River, MI) 

 

Version 3 – 3/3/2020 

This version used everything that was done in version 2 with the following changes 

 

Cool Season storms 

• Added SPAS 1740_1 (Croswell, MI) 

• Added SPAS 1743_1 (Belcourt, ND) 

 

Local storms 

• Added SPAS 1744_1 (East Trout Lake, SK) to local storms.  Moved to zones 1, 2, & 3 

• SPAS 1177_1 (Vanguard, SK) - Updated storm center 100-yr precipitation frequency 

value from 2.80 to 2.70 as part of Frenchman PMP PF update 

• SPAS 1334_1 (Buffalo Gap, SK) - Updated storm center 100-yr precipitation frequency 

value from 3.32 to 2.80 as part of Frenchman PMP PF update 

 

General storms 

• SPAS 1335_1 (Warrick, MT) - Updated storm center 100-yr precipitation frequency value 

from 4.82 to 4.09 as part of Frenchman PMP PF update 

• SPAS 1502_1 (Veteran, AB) - Updated storm center 100-yr precipitation frequency value 

from 3.14 to 3.61 as part of Frenchman PMP PF update 

• SPAS 1325_1 (Savageton, WY) – Limited GTF to 1.  All grid cells had a GTF value above 1.  

IMPF increases storm by 19% this is only adjustment applied.   

• SPAS 1337_1 (Parkman, SK) – Increased the lower limit of the GTF from 0.50 to 1.15 

 

Hybrid storms 

• SPAS 1336_1 (Springbrook, MT) - Updated storm center 100-yr precipitation frequency 

value from 4.56 to 2.79 for Local and 3.52 for General as part of Frenchman PMP PF 
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update.  Updated transposition limits from West of 99° W or greater than 1,500 ft to all 

of zones 2 and 3. 

• SPAS 1699_1 (Hayward, WI) – Increased the lower limit of the GTF from 0.50 to 0.75. 

 

Version 3a – 3/9/2020 

Used version 3 with these changes 

Hybrid storms (Local) 

• SPAS 1336_1 (Springbrook, MT) – Removed from Local storms 

 

Hybrid storms (General) 

• SPAS 1336_1 (Springbrook, MT) – Updated transposition restraint to west of 98° W and 

set the GTF to 1.  There were no GTF values below 1 before this was applied.   

 

General storms 

• SPAS 1337_1 (Parkman, SK) – Removed GTF constraint applied in v3 

 

Version 3b – 3/9/2020 

Used version 3a with these changes 

General storms 

• SPAS 1335_1 (Warrick, MT) – Updated transposition restraint to west of 98° W and set GTF 

to 1. 

 

Version 3c – 3/9/2020 

Used version 3b with these changes 

General storms 

• SPAS 1335_1 (Warrick, MT) –Set GTF to 1.1. 

 

Hybrid storms (General) 

• SPAS 1336_1 (Springbrook, MT) – Set the GTF to 1.1. 

 

Version 3d – 3/10/2020 

Used version 3b with these changes 

General storms 

• SPAS 1335_1 (Warrick, MT) –Normalized the GTF to a maximum value of 1. 

  
Hybrid storms (General) 

• SPAS 1336_1 (Springbrook, MT) – Normalized the GTF to a maximum value of 1. 
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Version 3b-Check overlap with WY-compare to adjacent PMP studies (Quad Cities), check 

against HMR 51 and NOAA Atlas 14 

 

 

Version 4 – 3/12/2020 

Used version 3 with these changes 

Hybrid storms 

• SPAS 1336_1 (Springbrook, MT) – Removed from Local storms 

• SPAS 1336_1 (Springbrook, MT) – Updated transposition restraint to west of 98° W.  

Updated storm center 100-yr precipitation frequency value back to 4.56 from 3.52.  GTF 

values were unrealistic.   

General storms 

• SPAS 1337_1 (Parkman, SK) – Removed GTF constraint applied in v3 

• SPAS 1335_1 (Warrick, MT) - Updated transposition restraint to west of 98° W.  Updated 

storm center 100-yr precipitation frequency value back to 4.82 from 4.09.  GTF values 

were unrealistic 

• SPAS 1502_1 (Veteran, AB) - Updated storm center 100-yr precipitation frequency value 

back to 3.14 from 3.61.   

Local storms 

• SPAS 1177_1 (Vanguard, SK) - Updated storm center 100-yr precipitation frequency 

value back to 2.80 from 2.70.  GTF values were unrealistic 

• SPAS 1334_1 (Buffalo Gap, SK) - Updated storm center 100-yr precipitation frequency 

value back to 3.32 from 2.80 

Version 4a – 3/22/2020 

Used version 4 with these changes 

Local storms 

• SPAS 1177_1 (Vanguard, SK) - Normalized GTF values to a maximum of 1.4.  This 

reduced GTF values by 7% 

• SPAS 1334_1 (Buffalo Gap, SK) – Normalized GTF values to a maximum of 1.2.  This 

reduced GTF values by 20% 

General storms 

• SPAS 1335_1 (Warrick, MT) – Updated transposition restraint to zones 2 and 3 and 

limited GTF factor to a maximum of 1 

• SPAS 1336_1 (Springbrook, MT) – Updated transposition restraint to zones 2 and 3 and 

limited GTF factor to a maximum of 1 
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Version 4b – 3/24/2020 

Used version 4a with these changes 

Local storms 

• SPAS 1744_1 – East Trout Lake, SK – Removed from list 

 

Version 4c – 5/1/2020 

Used version 4b with these changes 

Local storms 

• SPAS 1177_1 – Vanguard, SK – Normalized GTF values to a maximum of 1.2.  This 

reduced GTF values by 20% 

 

Version 5 – 7/9/2020 

Used version 4c with these changes 

• Updated precipitation frequency values.  NOAA atlas 14 precipitation frequency values 

were unavailable for areas in Canada and Montana.  A mini analysis was completed for 

those areas and merged with existing NOAA atlas values at the borders.  

Local storms 

• SPAS 1177_1 – Vanguard, SK – Updated storm center precipitation from 2.80 to 2.86.  

Normalized GTF values to a maximum of 1.2.  Limited to areas above 1,400 ft.  

• SPAS 1744_1 – East Trout Lake, SK – Added back to list.  Normalized GTF to a maximum 

of 1.2.  Limited to zones 2 & 3 above 48° N 

General Storms 

• SPAS 1335_1 – Warrick, MT – Updated storm center precipitation amount from 4.82 to 

5.00.  

 

Version 5 Notes 

6hr General storms:  How to handle the boundary between 2 and 3?  Move 1336 further east?  

What is the actual difference in values?  What adjustments have we applied to 1336 for v5? 

72hrs how we lower Savageton more? 

Local storm-1744, let it go into zone 2 a little? 

 

Version 5a – 7/11/2020 

Used version 5 with these changes 

 

General Storms 

• SPAS 1336_1 (Springbrook, MT) – Updated transposition constraints from zones 2 and 3 

to zones 1,2 & 3 but above 1,400 ft. 

• SPAS 1325_1 (Savageton, WY) – Updated transposition constrain to anything above 

4,000 ft 
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Local Storms 

• SPAS 1744_1 (East Trout Lake, SK) – Updated transposition constraints from zones 2 & 3 

above 48° N to zones 1,2,3 above 47° N and west of 101°W 

 

Version 5a notes: 

General storm, 6hr 1000sqmi, may need to move 1336 to all of zone 1 to get perfect fit-not sure 

if it matters at 6hr 1000 

Local storm 6hr and 24hr 100sqmi-what does it look like without 1744?  Can we use elevation 

constraints instead of lat/lon to fit better? 

 

Version 5b – 7/12/2020 

Used version 5a with these changes 

General Storms 

• SPAS 1336_1 (Springbrook, MT) – Updated transposition constraints from zones 1,2 & 3 

above 1,400 ft to all zones. 

Local Storms 

• SPAS 1744_1 (East Trout Lake, SK) – Removed from storm list 

 

Version 5c – 7/12/2020 

Used version 5a with these changes 

Local Storms 

• SPAS 1744_1 (East Trout Lake, SK) – Updated transposition to above 1,500 ft and below 

2,500ft elevation and west of 101°N 

 

 

Version 5d – 1/18/2020 

Used v5c with these changes 

General Storms 

• SPAS 1206_1 – Updated transposition to go to all of zone 1  

 

Version 5e – 1/21/2021 

Used v5c with these changes 

General Storms  

• SPAS 1206_1 – Updated transposition to go to all of zone 1 and 2 East of 103° 

• SPAS 1502_1 – Updated transposition to go to all 3 zones 

Local Storms 

• SPAS 1744_1 – Normalized the GTF down to a maximum of 1.05 down from 1.2 to try to 

get it to better fit other storms at larger area sizes.   

 

 



 

I - 9 

 

Version 5f – 2/1/2021 

Used v5e with these changes 

Local Storms 

• SPAS 1744_1 – Normalized the GTF down to a maximum of 1 and allowed to be 

transposed to all zones.   

 

Need comparisons between storm types and for all HMR 51 area sizes 

Remove 1744 again or cap it so it basically has no influence-then what happens 

Check what is happening in circled areas 

Why the transition from 1177 to 1324 at 6hr 100sqmi in zone 1 (elevation?) 

Move 1286 further west?  Or what if only used as a general storm? 

 

 

Version 5g – 2/5/2021 

Used v5f with these changes – This is final version 

Local Storms 

• SPAS 1286_1 – Updated transposition to allow storm to go to all zones 

• SPAS 1699_1 – Updated transposition to allow storm to go to all zones 
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Appendix J 
Snow Water Equivalent and Temperature Time Series 
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1.1 Overview 

Applied Weather Associates (AWA) developed gridded 100-year snowpack in conjunction with 

an average daily temperature timeseries. The information was developed to cover a timeframe 

representing a complete picture of snow accumulation and snowmelt throughout the region.  

Therefore, it is important to note that the meteorological conditions associated with the full 

Probable Maximum Precipitation (PMP) rainfall event are valid from June through September 

over the North Dakota region.  Therefore, no direct snowmelt is expected to occur during the 

PMP rainfall event. This is consistent with all PMP studies in the region completed by AWA 

(Tomlinson et al., 2008; Kappel et al., 2014; Kappel et al., 2018) and with Hydrometeorological 

Reports 51 and 55A (Schreiner and Riedel, 1978 and Hansen et al. 1988). 

1.2 Development of Meteorological Time Series 

Snowmelt calculations are dependent on the availability of reliable snowpack and temperature 

climatologies.  For this study, several gridded data sources along with point location (surface 

station data), were evaluated and used to develop the gridded data sets used for the analysis as 

described below.  

1.2.1 Snow Water Equivalent  

AWA utilized surface observations, remote sensing data and modeled gridded data to quantify 

the spatial and temporal 100-year snow water equivalent (SWE) values. 

Station Data 

AWA calculated the 100-year (1% Exceedance) point value SWE based on 194 surface stations 

from  Snow Telemetry (SNOTEL) and Global Historical Climatology Network (GHCN) data 

networks within and surrounding the basins.  SWE data were extracted for the 1st and the 15th of 

each month from March 1st through September 15th.  For each date, for each station the 100-year 

SWE was calculated based on station L-moments statistics and the generalized extreme value 

(GEV) probability distribution (Hosking and Wallis, 1997).  The GHCN network sometimes 

provided direct measurements of SWE but always provided direct measurements of snow depth.  

An average snow density of 25% was applied for each date to convert the GHCN snow depth 

data to SWE (Pomeroy and Gray, 1995). 

SNODAS Data 

In addition to the point snow water equivalent, AWA utilized the National Operational 

Hydrologic Remote Sensing Center (NOHRSC) SNOw Data Assimilation System (SNODAS) 

gridded dataset.  SNODAS integrates observed, remotely sensed, and modeled datasets into 

estimated snowpack variables.  SNODAS is a physically-based, near real-time energy and mass 

balance, spatially-uncoupled, vertically-distributed, multi-layer snow model (Carroll et al., 2001; 

NOHRSC, 2004). The model has high spatial (1-km2) and temporal (1-hour and daily) 

resolutions and is run for the conterminous United States.  Snowpack products generated by 

SNODAS include SWE, snow depth, snowpack average temperature, snowmelt, and surface and 

blowing snow sublimation. The SNODAS data are available starting in 2003 though present, 

https://www.wcc.nrcs.usda.gov/snow/
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-ghcn
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providing 16 years of data to create snowpack climatologies for the lower 48 states. Since 

portions of the North Dakota domain extend into Canada, the unclipped SNODAS data were 

need and available starting in 2013 though present, providing 7 for this study. 

 

SNODAS daily gridded data were utilized on the 1st and the 15th of each month, starting March 

1st through September 15th. These data were utilized to calculate the 1% exceedance (100-year), 

mean, maximum, and minimum snowpack spatial variation. The SNODAS dataset were used to 

derive snowpack 1% Exceedance (1% Exceedance = average + (2.3263 * St. Dev)) spatial 

snowpack climatologies.  2.3263 is the z-score (standard deviation) of the 99th percentile from 

the normal distribution (R example qnorm(0.99) = 2.326348).  The daily gridded SNODAS 

climatologies were used to aid in the spatial interpolation of the station 100-year SWE (i.e., 

scaling the gridded spatial pattern to the observed station 100-year SWE).  The final adjusted 

100-year SWE grids were derived using the estimated SNODAS 100-year climatologies and 

station data 100-year SWE estimates as input into a climatologically aided spatial interpolation 

process following Daly et al., (1994), Schaake et al., (2004), Hultstrand and Kappel (2017), and 

Hultstrand and Fassnacht (2020). 

Daymet Data 

In addition to the SNODAS and station data, AWA utilized NASA’s Oak Ridge National 

Laboratory Daymet gridded dataset. Daymet is a collection of gridded estimates of daily weather 

parameters generated by interpolation and extrapolation from daily meteorological observations 

(Thornton et al., 2016). The model has high spatial (1-km2) and temporal (daily) resolutions and 

is run for all of North America. Daymet products include SWE and are available starting in 1980 

and though present, providing 40 years of data to help create snowpack climatologies. 

 

Like the other data sets, AWA utilized daily gridded Daymet data for the 1st and the 15th of each 

month, starting March 1st and continuing through September 15th. These data were used to 

calculate the 1% Exceedance (100-year), mean, maximum, and minimum snowpack spatial 

variation. The Daymet dataset was used to derive snowpack 1% Exceedance (1% Exceedance = 

average + (2.3263 * St. Dev)) spatial snowpack climatologies.  The daily gridded Daymet 

climatologies were used to aid in the spatial interpolation of the station 100-year SWE (i.e., 

scaling the gridded spatial pattern to the observed station 100-year SWE).  The final adjusted 

100-year SWE grids were derived using the estimated SNODAS 100-year climatologies and 

station data 100-year SWE estimates as input into a climatologically aided spatial interpolation 

process following Daly et al., (1994), Schaake et al., (2004), Hultstrand and Kappel (2017), and 

Hultstrand and Fassnacht (2020). 

Final 100-year SWE Climatologies  

Comparison of the station observed 100-year SWE estimates to the gridded 1% exceedance 

estimates for SNODAS and Daymet were made for the 1st and the 15th of each month from 

March 1st through September 15th. The SNODAS and Daymet 1% exceedance estimates had 

similar goodness-of-fit measurements (mean error (ME), mean absolute error (MAE), root mean 

square error (RMSE), correlation coefficient (r)).  Based on the goodness-of-fit measurements, 

and available period of record (POR) the Daymet grids were adjusted to the surface station 100-

year estimates and the SNODAS data were not used in the final grid development.  
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The final adjusted 100-year gridded SWE climatologies were produced from a combination of 

station data and SNODAS for the 1st and the 15th of each month from March 1st through 

September 15th. The gridded SWE values utilized for snowmelt calculations over the drainage 

basins are illustrated below for March 1st, March 15th, April 1st, and April 15th, May 1st, May 

15th, June 1st, and June 15th (Error! Reference source not found. through Figure 8). 

1.2.2 Temperature Time Series 

Gridded daily surface average temperature timeseries (𝑇𝑎) were compiled and utilized as input 

for the gridded snowmelt calculations as described in the following snowmelt methodology 

section (Section 0).  Daily gridded temperature data was obtained from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) (PRISM, 2004). The Daymet temperature 

products were also obtained and considered as an alternative option for snowmelt and sensitivity 

analysis of the snowmelt model but were not used in the final snowmelt tool calculations. The 

daily minimum (𝑇𝑎_𝑚𝑖𝑛), daily maximum (𝑇𝑎_𝑚𝑎𝑥), and daily average (𝑇𝑎_𝑎𝑣𝑔) parameters were 

each evaluated. These data sets covered the same time period as the SWE 100-year climatology 

but were developed on a daily timestep. The gridded Ta_avg Daymet values utilized for snowmelt 

calculations over the drainage basins are illustrated below for March 1st, March 15th, April 1st, 

and April 15th, May 1st, May 15th, June 1st, and June 15th (Error! Reference source not found. 

through Figure 16). 

1.3 Methodology 

1.3.1 Snowmelt Equation 

The U.S. Army Corps of Engineers (USACE) has conducted numerous snowmelt studies, which 

were aimed primarily at providing procedures for deriving maximum snow melt design floods. 

The USACE summarized two approaches to compute snowmelt. The first is the energy budget 

method, which allows the snowmelt solution to be as physically based as practicable by 

incorporating into snowmelt equations factors such as solar radiation, wind, and long-wave 

radiation exchange. The second method, temperature index equation, is a more simplified approach 

in which air temperature is assumed to be a representative index of all energy sources so that it can 

be used as the sole independent variable in calculating snowmelt.  The energy budget equation for 

a rain-free situation with a forested area of 60-80% is defined as: 

 

𝑀 = 𝑘(0.0084𝑣)(0.22𝑇𝑎 + 0.78𝑇𝑑) +  0.029𝑇𝑎                                𝐸𝑞. 1 

 

where 𝑀 is snowmelt (inches/day), 𝑇𝑎 is air temperature (oF), 𝑇𝑑 is dew point temperature (oF), 

and v is the wind speed (mph). 

 

The Temperature Index equation is defined as: 

 

𝑀 =  𝐶𝑚(𝑇𝑎 − 𝑇𝑏)               𝐸𝑞. 2 
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where 𝑀 is snowmelt (inches/day), 𝐶𝑚 is melt rate coefficient, 𝑇𝑎 is the air temperature (oF), and 

𝑇𝑏 is the base air temperature of 32.0oF.  The range of the 𝐶𝑚 factor is typically between 0.04 and 

0.08 inches/ oF for rain-free situations and up to 0.18 for rain-on-snow situations. A 𝐶𝑚 factor of 

0.06 is a common factor used when other calibration and/or snowmelt information is limited and 

for generally rain free snowmelt scenarios (USACE, 1998). For this study, four 𝐶𝑚 factors are 

available (Table 1).  

 

Table 1. Temperature index model melt rate coefficient used in PMP tool. 

Melt Factor (Cm) General Description 

0.060 
Clear sky, limited wind, the melt factor for clear 

day can range between 0.04 and 0.08 

0.187 Heavy Rain, 10mph Wind, 10" per 24hr period 

0.270 Heavy Rain, 20mph Wind, 10" per 24hr period 

0.353 Heavy Rain, 30mph Wind, 10" per 24hr period 

 

1.4 GIS Data Preparation and Snowmelt Tool 

Geographic Information Systems (GIS) were utilized to facilitate spatial data management, 

spatial analysis, and mapping. Temperature and SWE gridded datasets were obtained and 

processed in the Network Common Data Form (netCDF) multidimensional file format. Climate 

Data Operators (CDO) (Schulzweida, 2019) were used to process gridded files in netCDF 

format.  Processing gridded files involved calculating daily ensemble means for the available 

period of record for the 𝑇𝑎 datasets, resampling the 𝑇𝑎 and SWE gridded datasets to the 90 arc-

second spatial resolution grid format, using the WGS 1984 coordinate system, and converting the 

gridded datasets from netCDF format to ESRI geodatabase raster format. The 90 arc-second grid 

network matches the grid network utilized in the North Dakota Statewide PMP Study and 

provides full coverage over the analysis domain at a spatial resolution sufficient to capture 

variations over the spatial field. 

 

A basin snowmelt calculation tool, utilizing SWE and daily temperature derived during this 

study, was developed within the ArcGIS environment which allowed snowmelt calculations to 

be made efficiently with a variety of input parameters. Starting date, ending date, daily 𝑇𝑎 time 

series gridded datasets, starting day SWE gridded dataset, degree day coefficient, and the 

drainage basin are all variable input parameters.  

 

Based on the input parameters, the GIS snowmelt tool calculates the basin average snowmelt, 

using the Temperature Index method described in Section 0, along with the basin average values 

for daily 𝑇𝑎, degree days, and SWE. The tool also can provide the output for a discrete point 

location. The output is provided in a table in both ArcGIS geodatabase and Excel format. 
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Figure 1. Final 100-year SWE for March 1. 

 

 

Figure 2. Final 100-year SWE for March 15. 
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Figure 3. Final 100-year SWE for April 1. 

 

 

Figure 4. Final 100-year SWE for April 15. 
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Figure 5. Final 100-year SWE for May 1. 

 

Figure 6. Final 100-year SWE for May 15. 
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Figure 7. Final 100-year SWE for June 1. 

 

Figure 8. Final 100-year SWE for June 15 
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Figure 9. Daily Average Temperature for March 1. 

 

Figure 10. Daily Average Temperature for March 15. 
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Figure 2. Daily Average Temperature for April 1. 

 

Figure 3. Daily Average Temperature for April 15. 
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Figure 4. Daily Average Temperature for May 1. 

 

Figure 14. Daily Average Temperature for May 15. 

 



 

J - 22 

 

 

Figure 5. Daily Average Temperature for June 1. 

 

Figure 16. Daily Average Temperature for June 15. 
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