NORTH DAKOTA STATE ATER CONSERVATION COMMISSION LIBRARY COPY

PROGRESS REPORT ON THE GEOLOGY AND GROUND-WATER RESOURCES OF THE WESTHOPE AREA BOTTINEAU COUNTY, NORTH DAKOTA

BY J. E. POWELL, ENGINEER

GEOLOGICAL SURVEY UNITED STATES DEPARTMENT OF THE INTERIOR

NORTH DAKOTA GROUND-WATER STUDIES NO. 27

PREPARED GOOPERATIVELY BY THE UNITED STATES GEOLOGICAL SURVEY, THE NORTH DAKOTA STATE WATER CONSERVATION COMMISSION, AND THE NORTH DAKOTA STATE GEOLOGICAL SURVEY.

1959

PROGRESS REPORT ON THE GEOLOGY AND GROUND-WATER RESOURCES OF THE WESTHOPE AREA, BOTTINEAU COUNTY, NORTH DAKOTA

DUPLICATE

By

J. E. Powell Engineer, Geological Survey United States Department of the Interior

North Dakota Ground-Water Studies No. 27

Prepared cooperatively by the United States Geological Survey, the North Dakota State Water Conservation Commission, and the North Dakota State Geological Survey

- 1959 -

CONTENTS

	Page	
Abstract	l	
Introduction		
Location and general features of the area	4	
Purpose and scope of the investigation	5	
Previous investigations and acknowledgments	6	
Well-numbering system	8	
Physiographic features	9	
Geology and occurrence of ground water	10	
Principles of occurrence of ground water	10	
Geologic history	15	
General stratigraphic relationships	17	
Recent alluvium	19	
Glacial drift	20	
Deposits of glacial Lake Souris	21	
Alluvium in the valley of the Souris River	22	
Till and associated sand and gravel deposits.	23	
Bedrock	26	
Cannonball(?) member of Fort Union formation.	26	
Fox Hills(?) sandstone	27	
Pierre shale	28	
Older rocks	30	
Quality of the ground water	31	
Summary of ground-water conditions		
References		

ILLUSTRATIONS

	*	Facing Page
Figure 1.	Map showing physiographic provinces in North Dakota and location of the Westhope area	4
2.	Sketch illustrating well-numbering system	8
3.	Map of glacial Lake Souris	15
4.	Map showing locations of wells, depths of wells, and depths to water in wells in the Westhope area	17
5.	Geologic sections in the Westhope area	18
6.	Contour map showing approximate altitude of the top of the Pierre shale in the Westhope area	28

TABLES

1.	Quaternary, Tertiary, and Cretaceous stratigraphy in the Westhope area	18
2.	Chemical analyses of ground water	38
3.	Records of wells and test holes	39
4.	Logs of wells and test holes	44

PROGRESS REPORT ON THE GEOLOGY AND GROUND-WATER RESOURCES OF THE WESTHOPE AREA, BOTTINEAU COUNTY, NORTH DAKOTA

> By J. E. Powell

ABSTRACT

The area described in this report is in Bottineau County in north-central North Dakota and consists of approximately 81 square miles in the vicinity of the city of Westhope.

The geologic units in the area, from the land surface down, are as follows: Alluvium of Recent age; glacial deposits of Pleistocene age, consisting of deposits of glacial Lake Souris, deposits in the valley of the Souris River, and till and associated meltwater deposits of sand and gravel; and bedrock consisting of the Cannonball(?) member of the Fort Union formation of Paleocene age, the Fox Hills(?) sandstone of Late Cretaceous age, and the Pierre shale of Late Cretaceous age. Older Cretaceous formations include the Niobrara formation, Benton shale equivalents, and the Dakota sandstone.

Glacial deposits in the area probably originated during the Wisconsin stage of the Pleistocene epoch. Thirty-nine test holes drilled completely through the glacial drift indicate a range in thickness of 86 to 195 feet and an average of 140 feet.

- 1 -

Surface deposits in the area consist almost entirely of lake clay deposited by the waters of glacial Lake Souris. The glaciallake deposits range in thickness from 12 feet to 57 feet and average 27 feet. A few wells in the area obtain water from a sandy and gravelly zone near the base of the lake deposits. Generally wells of this type are less than 30 feet deep and supply only small amounts of water.

Older and more permeable alluvial deposits are found in the valley of the Souris River beneath the Recent alluvium and the deposits of glacial Lake Souris. These deposits are largely discontinuous, interbedded, and gradational and consist of sand, gravel, and clay in varying proportions. The older alluvial deposits range in thickness from 12 feet to 39 feet and average 23 feet.

Glacial till is present throughout the report area. It underlies the deposits of glacial Lake Souris in the uplands and occurs immediately below the deposits of older alluvium in the Souris River valley. The till is composed of heterogeneous material ranging in size from clay to large boulders. The glacial till ranges in thickness from 36 feet to 152 feet and averages 113 feet.

Either the Cannonball(?) member of the Fort Union formation or the Fox Hills(?) sandstone, or both, are believed to be present below the glacial till at some locations in the Westhope area. Cuttings from test holes that penetrated these deposits consisted of smooth gray clay or grayish-green sandy clay. As no fossils were recovered, the deposits could not be positively identified.

- 2 -

The Pierre shale is the oldest formation penetrated by test drilling. In the report area it consists of medium-light- to dark-gray clay and siltstone. Cuttings from most test holes contained fragments of bentonite and selenite (gypsum). The thickness of the Pierre shale in the Westhope area is believed to approximate 1,200 feet.

Ground water in sufficient quantity to supply a city or other large user is difficult to obtain in the Westhope area. Small amounts of water sufficient for individual farm and domestic use are obtained at the base of the deposits of Lake Souris and from aquifers in the glacial till.

Water of satisfactory quality to meet U. S. Public Health Service standards probably is not present in the report area. In most of the area the ground water has high concentrations of dissolved solids (more than 1,000 ppm) and, except in a few places, is very hard. Chemical analyses of water from six wells in the area show that it is generally unsuitable for irrigation.

The deposits of older alluvium in the valley of the Souris River 2 miles east of Westhope may be sufficiently permeable to yield larger amounts of water. However, additional test drilling and aquifer tests would be necessary to determine whether the alluvial deposits are sufficiently permeable and widespread to yield substantial water supplies.

- 3 -

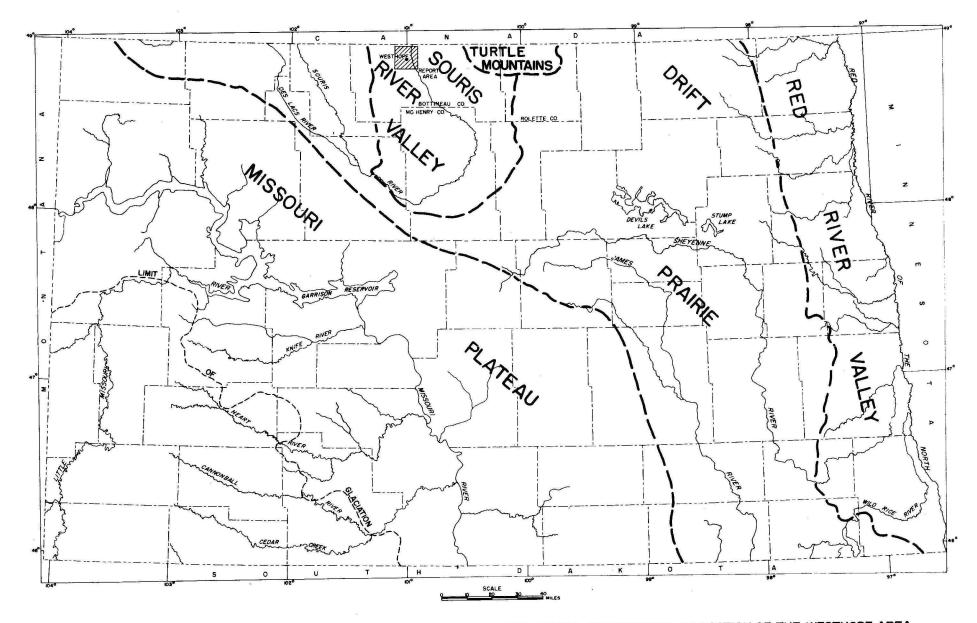


FIGURE I--PHYSIOGRAPHIC PROVINCES IN NORTH DAKOTA (MODIFIED FROM, SIMPSON, 1929) & LOCATION OF THE WESTHOPE AREA

INTRODUCTION

Location and General Features of the Area

The Westhope area in north-central Bottineau County is approximately 81 square miles and is in the following townships: the western half of T. 163 N., R. 79 W., sections 4 through 9 and 16 through 18 of T. 162 N., R. 79 W., all of T. 163 N., R. 80 W., and sections 1 through 18 of T. 162 N., R. 80 W. Westhope, the only city in the area had a population of 575 in 1950. It is served from the north and south by U. S. Highway 83 and from the east and west by a branch of the Great Northern Railroad. The average annual precipitation recorded by the U. S. Weather Bureau at Westhope from 1891 to 1954 was 14.55 inches. The mean annual temperature during the same period was 37.9 degrees. The principal occupation in the area is farming; the main crops are wheat, flax, barley, oats, and corn.

- 4 -

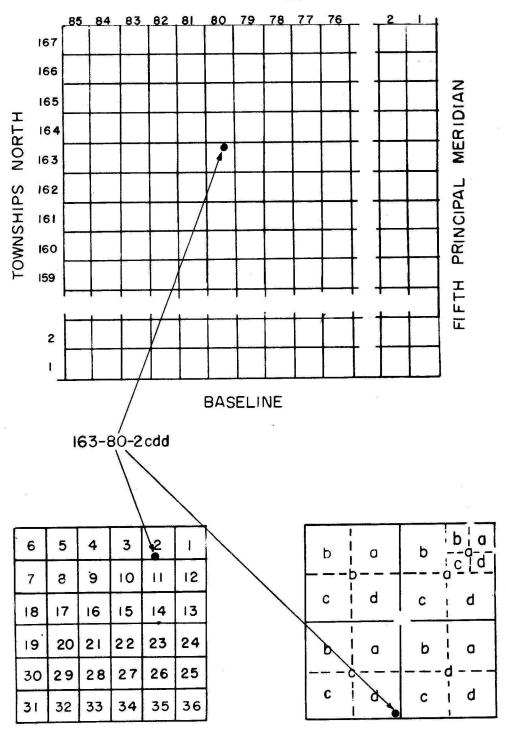
Purpose and Scope of the Investigation

This is a progress report on a study of the geology and ground-water resources of Bottineau County, N. Dak., which is being made by the U. S. Geological Survey in cooperation with the North Dakota Water Conservation Commission and the North Dakota Geological Survey. This investigation is one of a series being made to study the surface and subsurface geology and to determine the occurrence, movement, discharge, and recharge of the ground water, and the quantity and quality of ground water available for municipal, domestic, industrial, and irrigation purposes. The most critical need in the State is for adequate and perennial water supplies for the many small towns and cities that are attempting to install water-supply systems or are expanding present facilities. Because of this need, the countywide studies are begun in the vicinities of towns that have requested aid from the State Water Conservation Commission and the State Geologist.

- 5 -

Progress reports are released when enough data are accumulated to be helpful in the solution of water-supply problems of the towns and other water users. This investigation was made in 1953 and 1954 under the general supervision of A. N. Sayre, former chief of the Ground Water Branch, Water Resources Division, U. S. Geological Survey, and under the direct supervision first of P. D. Akin, district engineer, and then of Joseph W. Brookhart, district geologist, Grand Forks, N. Dak. The fieldwork and test drilling were done by or under the direct supervision of the author, using a rig owned by the North Dakota State Water Conservation Commission. Chemical analyses included in the report were made by the North Dakota State Laboratories Department.

Previous Investigations and Acknowledgments


A general study of the geology and ground-water resources of $\frac{1}{}$ Bottineau County was made by Simpson (1929, p. 79-88), who included in his report a discussion of the log of a test hole drilled by the North Dakota Gas Co. 9 miles south of Westhope. Abbott and Voedisch (1938, p. 48) made an investigation of the municipal water supplies of North Dakota, and their report includes a well description and chemical analysis of water from Westhope city well 1.

1/See References at end of this report.

- 6 -

The first investigation of the geology of the area was made by Upham (1895), who described the surface features of the glacial Lake Souris basin in the vicinity of Westhope.

The cooperation of residents of the Westhope area was of great help during the present investigation. Valuable assistance was given by members of the city council, who supplied general information and otherwise facilitated the investigation. Thanks are due to C. A. Simpson and Sons, well drillers, who supplied logs and considerable information concerning depth and performance of wells in the area.

RANGES WEST

Figure 2 -- Sketch illustrating well-numbering system.

Well-Numbering System

3 4

The well-numbering system used in this report is illustrated in figure 2 and is based upon the location of the well within the public land classification of the U.S. Bureau of Land Management. The first numeral denotes the township north of the base line; the second numeral denotes the range west of the fifth principal meridian, and the third numeral denotes the section in which the well is located. The letters a, b, c, and d designate, respectively, the northeast, northwest, southwest, and southeast quarter sections, quarter-quarter sections, and quarter-quarter-quarter sections (10-acre tracts). Consecutive terminal numerals are added when more than one well is listed within a given 10-acre tract. Thus, well 163-80-2cdd is in the southeast quarter of the southeast quarter of the southwest quarter of section 2, T. 163 N., R. 80 W. Similarly, well 163-79-2cca2 is the second well located in the northeast quarter of the southwest quarter of the southwest quarter of section 2, T. 163 N., R. 79 W.

- 8 -

Physiographic Features

The area is a part of the Western Young Drift section of the Central Lowland province of Fenneman (1938, p. 599) and is in the Souris River valley as designated by Simpson (1929, p. 4). The Souris River valley is a broad glacial-lake basin which slopes gently northward toward the long axis of the basin. The basin was occupied by the waters of glacial Lake Souris probably during the latter part of the Mankato substage of the Pleistocene epoch.

The Westhope area is a depositional lake plain. Relief in the area is for the most part very gentle and seldom exceeds 10 feet in a square mile. Sharper relief can be seen in the valley of the present day Souris River, where in places the valley floor is 100 feet below the lake plain.

The area is drained by the northward-flowing Souris River, which is a part of the Hudson Bay drainage system. Reservoirs impounded by dams constructed across the valley by the U.S. Fish and Wildlife Service serve as refuges for migratory waterfowl.

Numerous small, shallow coulees dissect the otherwise flat surface of the lake plain. The coulees form the secondary drainage network for the area and gradually deepen and broaden as they near the main river valley.

- 9 -

GEOLOGY AND OCCURRENCE OF GROUND WATER

Principles of Occurrence of Ground Water

Practically all ground water is derived from precipitation. Water enters the ground by direct penetration of rain or melting snow or by percolation from streams and lakes that lie above the water table. Ground water generally moves downward and then laterally from areas of recharge to areas of natural discharge.

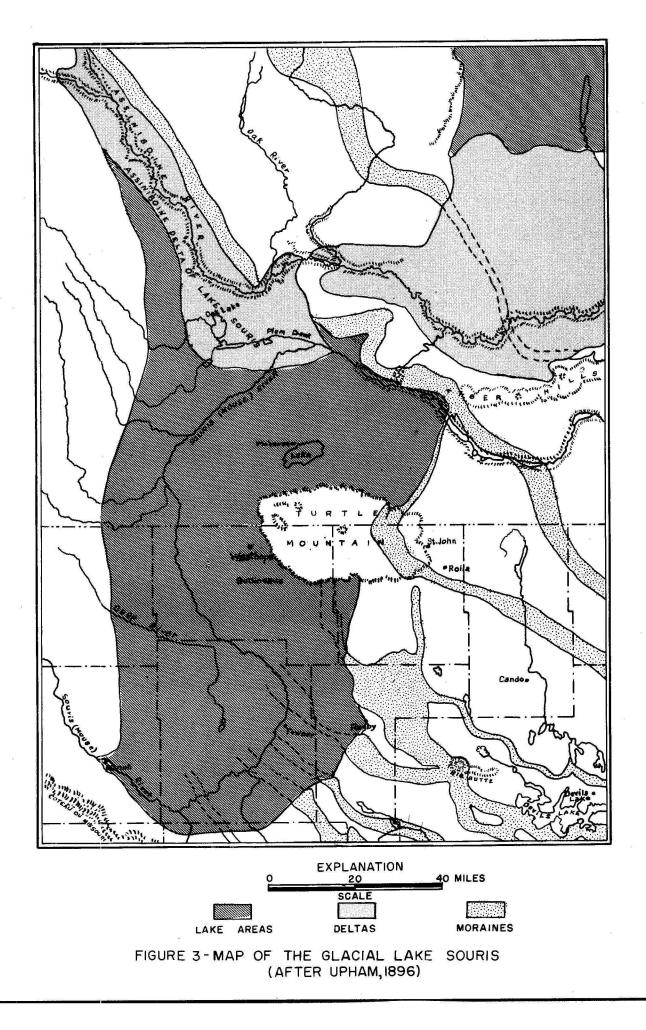
Ground water is discharged by evaporation from lakes and ponds, by transpiration by plants and evaporation from the land surface in areas where the water table is near the land surface, by seepage into streams, by pumping from wells, and by discharge from springs.

Any rock formation or stratum that will yield water in sufficient quantity to be important as a source of supply is called an "aquifer" (Meinzer, 1923, p. 52). Water moving in an aquifer from recharge to discharge areas may be considered to be in "transient storage."

The amount of water that a rock can hold is determined by its porosity. Unconsolidated material, such as clay, sand, and gravel, generally is more porous than consolidated rock such as sandstone and limestone; however, consolidated rocks in some areas are highly porous.

- 10 -

The capacity of an aquifer to yield water by gravity drainage may be much less than indicated by its porosity because part of the water is held in the pore spaces by molecular attraction between the water and the rock particles; the smaller the pores, the greater the proportion of water that will be held. The amount of water, expressed as a fraction of a cubic foot, that will drain by gravity from 1 cubic foot of an aquifer is called the "specific yield" of the aquifer.


If the water in an aquifer is not confined by overlying, relatively impermeable strata the water is under water-table conditions. Under these conditions, water can be obtained from storage in the aquifer by gravity drainage- that is, by lowering the water level as in the vicinity of a pumped well. Water is under artesian conditions if it is confined in the aquifer by an overlying relatively impermeable stratum. Under these conditions, hydrostatic pressure will raise the water in a well, or other conduit penetrating the aquifer, above the top of the aquifer. When water is yielded from the well, the aquifer remains saturated and water is yielded because the water expands and the aquifer is compressed as the pressure is decreased. Gravity drainage does not occur under artesian conditions. The wateryielding capacity of an artesian aquifer is called the "coefficient of storage" and generally is very much smaller than the specific yield of the same material under water-table conditions. The coefficient of storage of an aquifer is the volume of water it releases from or takes into storage per unit surface area of the aquifer per unit change in the component of head normal to that surface.

The water released from or taken into storage in a water-table aquifer in response to a change in head is attributed partly to gravity drainage or refilling of the zone through which the water moves and partly to compressibility of the water and of the material in the saturated zone. The volume of water attributable to compressibility is a negligible part of the total volume of water released from or taken into storage, however, and can be disregarded. Thus, for a water-table aquifer, the coefficient of storage is practically equal to the specific yield.

- 12 -

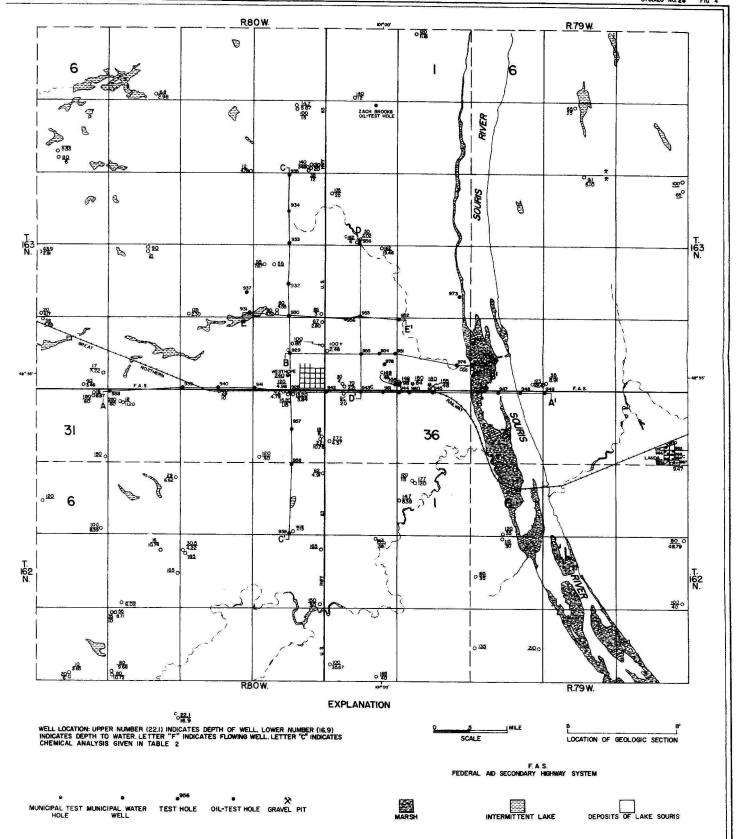
The resistance to the movement of water through pore spaces that are relatively large, as in coarse gravel, is not great and such material is said to be permeable. However, the resistance to the movement of water through small pore spaces, as in clay or shale, may be very great and such material is said to be relatively impermeable or to have low permeability. The "coefficient of permeability" is expressed quantitatively, for field use, as the number of gallons of water per day that will pass through a cross-sectional area of 1 square foot under unit hydraulic gradient at the local temperature of the ground water.

The "coefficient of transmissibility" is convenient to use in ground-water studies because it indicates a characteristic of the aquifer as a whole rather than of a small part. It is the average field permeability of the aquifer multiplied by its thickness, in feet. The suitability of an aquifer as the source of water supply is governed by its permeability, its volume, and its capacity to store and release water. Recharge to the aquifer also must be adequate if the water-supply development is to last indefinitely, because even a small rate of withdrawal will deplete the water in storage ultimately unless there is equal or greater recharge. Aquifers which are highly permeable but small in areal extent and which are surrounded by relatively impermeable material can be pumped dry in a comparatively short time. The rather high initial yield of a well may give an erroneous impression that a great volume of water is available from the aquifer indefinitely. Thus, before any substantial ground-water development is made, sufficient test drilling, aquifer tests, and related studies should be undertaken to determine the capabilities and recharge conditions of the aquifer being considered.

Geologic History

During the last substages of the Wisconsin stage of the Pleistocene epoch, glacial Lake Souris was formed in the northward-sloping Souris River basin. The lake was formed in front of the ice margin during the last retreat of the glacier; consequently, the configuration of the surface of the basin is essentially the same as it was when covered by the water of the glacial lake. At its maximum stage, Lake Souris was approximately 175 miles long and 75 miles wide, and extended from the southern loop of the Souris River in North Dakota to the point in the province of Manitoba, Canada where the river turns sharply north through the Tiger Hills. (See fig. 3.)

The outflow of Lake Souris during its early stages was southward via the Sheyenne River to the southern part of glacial Lake Agassiz in eastern North Dakota. When the ice had retreated far enough north to uncover the Turtle Mountains, the outflow passed north of the Turtle Mountains and thence to the northern part of Lake Agassiz via the Pembina River (Upham, 1896, p. 268).


After the last major retreat of the Dakota ice lobe it is quite probable that minor advances and recessions of the ice in parts of the Souris basin caused fluctuations in the level of the lake. Inasmuch as there are no prominant beaches or other evidence of extensive wave or lake-ice action in the area, it is doubtful that the lake remained at fixed stages for long periods. During at least a part of its history Lake Souris was probably broken into several segments and contained numerous islands.

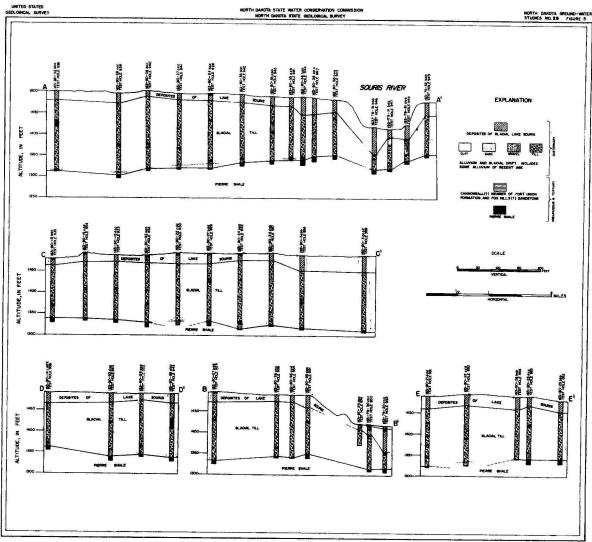
- 15 -

The part of the Souris River that flows through the report area is approximately in the middle of the basin formerly occupied by glacial Lake Souris. Therefore, as the lake was drained and its borders retreated slowly to the north with the retreat of the ice, there probably was little or no flow of water in the Souris River valley, inasmuch as it was itself a part of the lake beds being slowly uncovered as the lake receded. Because of the position of the valley in relation to the borders of the lake it is doubtful that the waters of glacial Lake Souris were involved to any great extent in the deposition of alluvium in the Souris River valley. More likely the alluvium was deposited by glacial meltwater from a source outside the Souris River Basin.

The Cannonball(?) member of the Fort Union formation and the Fox Hills(?) sandstone, both of which may be present in the area, were deposited in a marine environment. The Cannonball(?) member was deposited by the Tertiary sea during its only invasion of the area in early Tertiary time. The Fox Hills(?) sandstone was deposited by the Cretaceous sea during its last advance in Late Cretaceous time.

- 16 -

NITED STATES


NORTH DAKOTA STATE WATER CONSERVATION COMMISSION NORTH DAKOTA STATE GEOLOGICAL SURVEY

NORTH DAKOTA GROUND-WATER. STUDIES NO. 28 FIG. 4

General Stratigraphic Relationships

Information regarding the stratigraphy in the Westhope area was obtained in part from a study of the cuttings from 49 test holes and in part from published information. The locations of test holes drilled in the area are shown on figure 4, and the logs are listed on pages 44 to 67. The test holes were drilled with a hydraulic-rotary drilling machine owned by the North Dakota State Water Conservation Commission. The depths of the test holes ranged from 50 to 200 feet and averaged 119 feet. Samples were taken of each 5-foot interval. Geologic cross sections based upon logs of test holes are shown on figure 5. Information concerning the deeper formations in the area was obtained from logs of oiltest holes supplied by the North Dakota Geological Survey. The logs of other wells and test holes also were available for study. The following partial stratigraphic section was determined by examination of samples from test holes drilled in the area and by extrapolation of information from logs of oil-test borings in nearby areas.

- 17 -

GEOLOGIC SECTIONS IN THE WESTHOPE AREA

×.

Table 1 - Quaternary, Tertiary, and Cretaceous stratigraphy in the Westhope area

Cenozoic era Quaternary system

Recent series

Alluvium

Pleistocene series

Wisconsin stage

Deposits of glacial Lake Souris

Deposits of alluvium in the valley of the Souris River Till and associated sand and gravel deposits

Pre-Wisconsin(?) stage

Tertiary system

Paleocene series

Cannonball(?) member of Fort Union formation

Mesozoic era

Cretaceous system Upper Cretaceous series Fox Hills(?) sandstone Pierre shale Niobrara formation Benton shale equivalents Dakota sandstone

Recent alluvium

Thin deposits of Recent alluvium consisting of clay, silt, and very fine sand are present in the Souris River valley and in the valleys of its tributaries. The contact between these deposits and underlying deposits is gradational and their thickness varies considerably from point to point in short distances. Generally the Recent alluvium is thin and discontinuous. The deposits range in thickness from a few inches to a maximum of 8 feet. They are extremely lenticular and contain no important aquifers. Near the valley edges the deposits of Recent alluvium grade into deposits of slopewash.

- 19 -

Glacial drift

The glacial drift in the Westhope area probably originated during the Wisconsin stage of the Pleistocene epoch. There are three types of drift: (1) lake clays deposited in glacial Lake Souris, (2) alluvium deposited by glacial meltwater in the valley of the Souris River, and (3) glacial till and associated sand and gravel deposits.

Thirty-nine test holes penetrated the entire thickness of the glacial drift. The thickness of the drift averaged 140 feet and ranged from 86 feet in test hole 948 (163-79-31aba) to 185 feet in test hole 940 (163-80-28dcc). An examination of drill cuttings from the test holes did not reveal the presence of an oxidized zone that might indicate an older drift. However, the number of test holes drilled through the drift was small in relation to the size of the area and was not sufficient to establish definitely whether more than one sequence of glacial deposition was involved. Portions of the till and associated deposits may have originated during an earlier stage of the Pleistocene epoch. Deposits of glacial Lake Souris.--Surface deposits in the Westhope area, except for scattered deposits of Recent alluvium in the valley of the Souris River, consist entirely of lake clay deposited by the waters of glacial Lake Souris. The clay is generally well sorted and in drill cuttings exhibits the laminations characteristic of lake deposits. At many locations the clay contains small amounts of sand and gravel, especially near its base, immediately above the glacial till. As determined by test drilling, the thickness of the lake deposits averaged 27 feet and ranged from 12 feet at the site of test hole 974 (163-80-25dac) to 57 feet at the site of test hole 946 (163-79-31bbb). The most common color of the lake-clay deposits is yellow-brown. However, at some locations it is gray, dark brown, or green.

Inasmuch as the lake clay is relatively impermeable, recharge to deeper glacial-drift aquifers by percolating surface waters is considerably inhibited, resulting in greater surface runoff and evaporation that would occur from more permeable materials. A few wells obtain water from the sandy and gravelly zone near the base of the glacial deposits of Lake Souris. Generally wells of this type are less than 30 feet deep and yield only small amounts of water.

- 21 -

<u>Alluvium in the valley of the Souris River</u>.--Older and more permeable alluvial deposits underlie the Recent alluvium and deposits of glacial Lake Souris in the valley of the Souris River. These deposits are largely interbedded, discontinuous and gradational, and consist of sand, gravel, and clay in varying proportions. Test drilling failed to disclose any places where the deposits of alluvium are underlain by depósits of glacial Lake Souris; hence, it is probable that the alluvium was deposited by the Souris River prior to the formation of glacial Lake Souris. However, it is possible that the early deposits of Lake Souris were completely removed from the valley by stream erosion and were later replaced by alluvial deposits.

The alluvial deposits vary considerably in thickness as well as in their proportion of component materials. Ten test holes were drilled in the valley of the Souris River and six of these penetrated deposits that could positively be identified as alluvial in origin. The alluvial deposits range in thickness from 12 feet to 39 feet and average 23 feet.

A large part of the valley of the Souris River is occupied by water which has been impounded to provide refuges for migratory waterfowl. As a result, only one well in the area is known to produce water from the deeper alluvial deposits. However, it is believed that these deposits, though discontinuous, may be hydraulically connected and thus may constitute a potentially productive aquifer.

- 22 -

<u>Till and associated sand and gravel deposits</u>.--Glacial till is present throughout the report area. It underlies the deposits of glacial Lake Souris in the uplands and occurs immediately below the deposits of older alluvium in the Souris River valley. The till was deposited directly from the melting ice and was subjected to little or no subsequent sorting by wind or water. Because the till is composed of unsorted material and because the spaces between the larger particles tend to be filled with finer materials, till does not ordinarily yield water readily to wells.

In general, glacial till is composed of heterogeneous materials ranging in size from clay to large boulders, but clay is the predominant constituent. The till in the Westhope area is dark- to light-gray calcareous, silty clay and contains varying amounts of sand, gravel, and boulders. The gravel is composed principally of shale fragments and irregular amounts of limestone, dolomite, and igneous-rock fragments. The small bodies of sand and gravel in the till were penetrated by many of the test holes (see table 4). These deposits vary considerably in thickness and in the area they underlie. They are alluvial in origin and were deposited by streams of glacial meltwater.

The thickness of glacial till as determined by test drilling averaged 113 feet and ranged from 36 feet in test hole 946 (163-79-31bbb) to 152 feet in test hole 957 (163-80-34dbb).

- 23 -

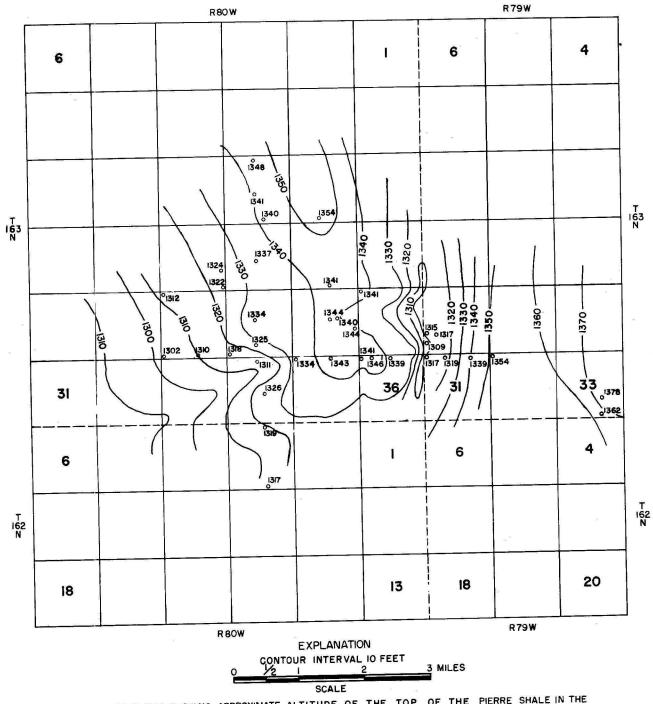
The permeability of the till varies from place to place with the proportion of sand and gravel it contains, so that a well finished in till at one location will yield water, whereas a similar well a short distance away will yield little or no water.

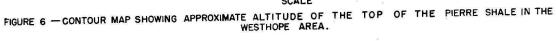
Wells of rather high initial yield may be developed in sand and gravel deposits within the till. However, the production of wells penetrating aquifers that are lenticular- that is, aquifers that are completely surrounded by dense till decreases rapidly as the aquifers become unwatered. Recharge through the glacial till to these aquifers is slow, and pumping rates must be correspondingly low if production is to be maintained. Water for farm and domestic use is obtained from the till throughout the Westhope area. Wells that have higher production are probably finished in lenticular sand and gravel deposits. The Westhope municipal water-distribution system was installed in 1948. Before this time supplies were obtained from shallow wells in and near the city and from a public-supply well half a mile east of the city. In 1958 the city supply was obtained from two wells. City well 1 (163-80-26ddal) is 150 feet deep and is approximately a mile east of Westhope. City well 2 (163-80-25ccc) is 145 feet deep and is approximately 500 feet east of city well 1. Both wells obtain water from a sand and gravel zone at or near the base of the glacial drift and immediately above the Pierre shale. City well 1 was drilled in May 1946, when the water level was reported to be 49 feet below the land surface. When city well 2 was completed in the same aquifer in December 1954 the measured water level was 103.09 feet below the land surface. It was observed that pumping of city well 1 caused almost immediately a lowering of the water level in city well 2.

Bedrock

<u>Cannonball(?)</u> member of Fort Union formation.--The presence of the Cannonball(?) member in the report area has not been definitely established but the Cannonball(?) member may be represented by smooth gray clay which immediately underlies the glacial drift in places. This clay was penetrated by test holes 930 (163-80-22cdd), 939 (163-80-28ccc), 941 (163-80-27ccc), and 962 (163-79-30cbd). The gray clay averaged $3\frac{1}{11}$ feet in thickness in the four test holes in which it was identified. It ranged in thickness from 1 foot at test hole 962 to 5 feet at test hole 939. Possibly the gray clay was penetrated by other test holes in the area but was not recognized in the drill cuttings. Except for the absence of sand and gravel it does not differ markedly from glacial till in composition or color. Lack of sand, gravel, or other coarse rock debris in the gray clay indicates that it is not of glacial origin.

The closest outcrop of the Cannonball(?) member is reported (Brown and Lemke, 1948, p. 624-625) to occur near the towns of Velva and Sawyer, approximately 76 miles south of Westhope.


None of the wells inventoried in the Westhope area produce water from the Cannonball(?) member, and it is not considered to be an aquifer.


- 26 -

<u>Fox Hills(?) sandstone</u>.--The presence of the Fox Hills(?) sandstone in the Westhope area has not been definitely established; however, the formation is believed to be present in several places in the form of a grayish-green sandy, gravelly clay immediately below the gray clay of the Cannonball(?) member. It was penetrated in test holes 928 (163-80-34baa4), 930 (163-80-22cdd), 938 (163-80-32bbb), 939 (163-80-28ccc), 941 (163-80-27ccc), 961 (163-80-35aab), and 968 (163-79-33dca2). The thickness of the green sandy clay averaged approximately $3\frac{1}{2}$ feet and ranged from 1 foot in test hole 930 to 12 feet in test hole 928. Possibly this material was penetrated by test drilling in other parts of the report area but was not recognized in the drill cuttings.

Although the Fox Hills(?) sandstone does not underlie the whole of the report area, it is believed to be present in scattered patches at many places. These patches may be interconnected in parts of the area by narrow, elongate zones of the same formation. This situation is believed to exist in the vicinity of the Westhope city wells as the analysis of water from city well 1 is similar to analyses of water known to have been produced from the Fox Hills(?) sandstone in other parts of the State (Abbott and Voedisch, 1938, p. 35).

- 27 -

Pierre shale .-- During the field investigation test drilling was continued no farther than the top of the Pierre shale. This formation underlies the whole area and constitutes the bedrock immediately below the glacial drift where the Cannonball(?) member and the Fox Hills(?) sandstone are not present. The Pierre shale was reached by 41 test holes. In the Westhope area it consists of medium-light-gray to medium-dark-gray clay and siltstone. Cuttings from most of the test holes that penetrated the Pierre shale contained fragments of bentonite and selenite (gypsum). As the Pierre shale is relatively impermeable, water percolating downward through the glacial drift is confined at the top of the Pierre; thus, moderate supplies of water may be obtained from sandy and gravelly zones where they are present at the base of the glacial Small amounts of moderately mineralized water are obtained till. from fractured zones of brittle clay at the top of the Pierre shale in other parts of North Dakota; however, similar zones were not evident in the Westhope area. The log of the Zach Brooks Drilling Co., Herman Haugen No. 1 oil-test well (163-80-11abb), approximately $1\frac{1}{2}$ miles northeast of test hole 935 (163-80-15baa), lists the top of the Niobrara formation, which immediately underlies the Pierre shale, as being 1,335 feet below the land surface. No elevation was listed for the top of the Pierre shale. Test hole 935 penetrated the top of the Pierre shale at a point 142 feet below the land surface.

2/Oral communication, S. B. Anderson, North Dakota Geological Survey.

- 28 -

Inasmuch as the altitudes of the land surface at the two test holes are approximately equal, the thickness of the Pierre shale can be estimated at 1,200 feet in the Westhope area. This figure could be in error by about 100 feet, owing to irregularities in the surface of the formation. Figure 6 shows the approximate altitude of the top of the Pierre shale in the Westhope area.

No wells in the Westhope area are known to obtain water from the Pierre shale and it is not considered to be an aquifer. <u>Older rocks</u>.--The Pierre shale is underlain in the Zach Brooks oil-test well by older rocks of Cretaceous age and by rocks of Jurassic, Triassic, and Mississippian age. The test well was drilled to a depth of 3,757 feet and did not penetrate rocks older than Mississippian; however, it is probable that older Paleozoic rocks occur beneath the Mississippian.

The Dakota sandstone of Late Cretaceous age is the only deeplying formation of potential importance as an aquiferin the Westhope area. According to the log of the Zach Brooks well, the Dakota sandstone occurs 2,113 feet below the land surface and is 350 feet thick. Large amounts of highly mineralized water are obtained from the Dakota sandstone in other parts of North Dakota, and in some localities the water is under sufficient hydrostatic pressure to cause it to flow at the land surface. However, it is doubtful that pressure in the Westhope area would be sufficient to produce flow from wells penetrating that formation. The water may be moderately to highly mineralized.

QUALITY OF THE GROUND WATER

Ground water dissolves a part of the soluble mineral constituents of the rock particles as it moves into and through an aquifer. The amount of mineral matter dissolved depends principally on the amount of soluble materials in the aquifer and the length of time the water is in contact with them. Therefore, in any aquifer, water that has been stored underground a long time or has traveled a long distance from the recharge area generally is more mineralized than water that has been stored a short time and recovered relatively near the recharge area of the same aquifer.

Six samples of water were collected in the Westhope area. The wells from which samples were taken produce from glacial drift and range in depth from 65 to 170 feet. Chemical analyses of the samples are listed in table 2. Water from five of the wells is similar to water from glacial drift in other parts of North Dakota. However, water from the Westhope city well (163-80-26ddal) is much softer than water from the other wells. It may be that the Westhope well obtains water directly or by leakage from the Fox Hills(?) sandstone rather than entirely from glacial drift. Low hardness is typical of water in the Fox Hills(?) sandstone in other parts of the State (Robinove, 1956, p. 23). Constituents typical of water from the Fox Hills(?) sandstone and also present in relatively large concentrations in the Westhope city water are sodium (490 ppm), sulfate (220 ppm), bicarbonate (712 ppm), and chloride (179 ppm).

- 31 -

The U. S. Public Health Service (1946) has established standards for drinking water used on common carriers in interstate traffic. Listed below are the concentration limits for some of the chemical substances commonly present in drinking water.

Chemical constituent	Concentration (ppm)
Iron (Fe) plus manganese (Mn)	0.3
Magnesium (Mg)	125
Sulfate (SO_{μ})	250
Chloride (Cl)	250
Fluoride (F)	1.5
Dissolved solids	500

Dissolved-solids concentrations of 1,000 ppm are permitted if water of better quality is not available.

Water of satisfactory quality to meet U. S. Public Health Service standards probably is not present in the report area. In most of the area the ground water has high concentrations of dissolved solids (above 1,000 ppm) and, except in a few places, is very hard. Four of the six samples contained sufficient hydrogen sulfide to impart a disagreeable odor to the water, and one of the six had a high concentration of nitrate. All the samples analyzed had relatively high concentrations of iron.

- 32 -

The chemical analyses of ground water in the Westhope area given in table 2 show that the recommended limits of some chemical constituents are exceeded in water from all the wells sampled. However, water containing more than the recommended concentration of certain chemical constituents has been used in some areas, including North Dakota, for many years without noticeable ill effects.

High concentrations of nitrate in ground water may be due to the presence of decaying organic matter in the well, in the aquifer, or on the ground surface in the vicinity of the well. It may be due also to such inorganic material as mineral fertilizers. Water containing more than about 44 ppm of nitrate may cause cyanosis in infants when used in feeding formulas and for drinking (Comly, 1945; Silverman, 1949).

The consumption of water containing fluoride in concentrations of 0.8 to 1.5 ppm isbelieved to lessen the incidence of tooth decay, especially in children. However, during the period of calcification of the teeth the consumption by children of water having concentrations higher than about 1.5 ppm may cause mottling of tooth enamel (Dean, 1936). Fluoride in excess of the recommended limit was not present in any of the six samples.

- 33 -

Practically all ground water contains at least small amounts of minerals causing hardness. Hardness of water is caused principally by calcium and magnesium and to a lesser extent by iron, aluminum, manganese, copper, strontium, barium, zinc, and free acid. Hardness in water is generally undesirable, especially if the water is used for cleansing purposes, because it causes increased soap consumption as well as soap scum. Water having a hardness of about 100 ppm as CaCO₃ generally is considered to be moderately hard; water having a hardness of 200 ppm or more is considered very hard and generally requires softening to be satisfactory for most uses.

Water having a high concentration of sodium relative to the total cation concentration (high percent sodium) is unsuitable for irrigation because it may cause soils to become relatively impermeable. The relative proportion of sodium, expressed as a percentage, may be calculated using the following equation:

Percent Na = $\frac{\text{Na x 100}}{\text{Ca + Mg + Na + K}}$

where the concentrations of all cations are in equivalents per million.

The continued use of irrigation water in which the percent sodium is in excess of 50 may cause damage to the soil. However, the amount of damage to soil that will result from the continued use of a particular type of water depends also on other factors, such as salinity of the water, porosity of the soil, drainage, irrigation practices, and crop management. In general, the higher the percent sodium the less suitable the water is for irrigation.

- 34 -

Water having a high salinity also is unsuitable for irrigation. The salinity of water is determined by the quantity of dissolved salts it contains. Salinity is closely related to electrical conductivity. The value for electrical conductivity, therefore, may be used to indicate the salinity of water. A close approximation of the value for electrical conductivity may be obtained by using the following formula: Dissolved solids, in parts per million $\div 0.65$ = electrical conductivity in micromhos per centimeter at 25° C. Nearly all irrigation waters that have been used successfully for a considerable time have conductivity values less than 2,250 micromhos per centimeter. Waters of higher conductivity are used occasionally, but crop production, except in unusual situations, has not been successful (U. S. Salinity Laboratory Staff, 1954, p. 70).

Chemical analyses of the 6 water samples collected in the area showed that 5 samples had more than 50 percent sodium and 4 samples had conductivity values greater than 2,250 micromhos per centimeter. The remaining 2 samples had conductivity values greater than 2,000 micromhos per centimeter. It may be concluded, therefore, that water from all the 6 wells sampled is of poor quality for irrigation.

Because downward drainage is slow in the clay and silt which constitute the surface deposits over most of the area, considerable caution should be used in applying water having a high percent sodium or a high salinity.

- 35 -

SUMMARY OF GROUND-WATER CONDITIONS

Ground water in sufficient quantity to supply a city or other large user is difficult to obtain in the Westhope area. Test drilling failed to disclose the presence of an aquifer of even modest extent. However, scattered deposits of sand and gravel within or at the base of the glacial till supply small amounts of hard water which are generally adequate for individual farm or ranch use during times of normal precipitation.

Recharge to the aquifers in the glacial drift is restricted throughout the area by the surface deposits of lake clay. This clay, because of its low permeability, acts as a barrier to the downward percolation of water from precipitation and further limits the amount of ground water available to wells penetrating the small glacial-drift aquifers.

- 36 -

The two Westhope city supply wells which penetrate sand and gravel at the base of the glacial drift, furnish about 100 gpm. The very low hardness of the water from these wells (58 ppm) and the high percent sodium (94) in comparison with other wells in the area suggests the possibility that the Westhope city wells obtain some of their water from a bedrock source which is probably the Fox Hills(?) sandstone. Test holes 976 (163-80-26dac), 961 (163-80-35aab), and 944 (163-80-36bbb) all were drilled within a quarter of a mile of the city wells and all penetrated zones immediately below the glacial drift which were thought to be bedrock, either the Fox Hills(?) sandstone or the Cannonball(?) member of the Fort Union formation. However, attempts to core the material were unsuccessful and positive identification was not possible. Moderate additional amounts of water may be available from this bedrock(?) source in the vicinity of the Westhope citysupply wells.

Larger supplies of ground water may be available from the deposits of older alluvium in the valley of the Souris River 2 miles east of Westhope. The alluvial deposits are gradational and discontinuous and consist of varying proportions of sand, gravel, and clay. Although the permeability of the alluvium probably varies considerably at different locations in the valley, the deposits may be hydraulically connected throughout their extent. However, additional test drilling and aquifer tests would be necessary to determine whether the alluvial deposits are sufficiently permeable to constitute a promising future source of ground-water supply.

- 37 -

Aquifer: D, glacial drift Fh, Fox Hills(?) sandstone Results in parts per million except as indicated

Location	Owner or	e de la construction de la const	Depth of	Date of	Iron	Calcium	Magnesium	Sodium
number	name		well (feet)	collection	(Fe)	(Ca)	(Mg)	(Na)
163-79-30cbcl	U. S. Fish & Wildlife Service	D	65	8- 9-54	1.9	137	71	312
163-79-33ddcl	Test hole 964	D	162	8-30-54	•3	72	57	530
163-80-14cddl	John Frazier	D		8-15-54	•4	215	101	445
163-80-26dddl	City of Westhope	D and		8-16-54	•6	7	10	490
163-80-27bdd 163-80-35abb	well No. 1 Test hole 929 Test hole 943	(or) Fh D D	170 160		3 3	162 245	66 94	338 362

Analyses by State Laboratories, Bismarck

Potassium (K)	Bicarbonate (HCO ₃)	Carbonate (CO ₃)	$\operatorname{Sulfate}_{(\mathrm{SO}_{4})}$	Chloride (Cl)	Fluoride (F)	Nitrate (NO ₃)	Hardnes as CaCo ₃	Dissolved solids (sum of determined constituents)	Percent sodium
45	774	42	341	187	0	6	637	1,520	74
14	463	12	708	291	0	13	413	1,930	52
10	742	0	809	242	0	104	954	2,290	44 /
3.2	712	47	220	179	0.3	16	58	1,320	94
10	411	0	508	95	,2	11	672	1,400	50
13	580		1,150	40	0	9	996	2,200	51

- 38b -

Depth to water: Measured water levels in feet and hundredths; reported water levels in feet.

Type of well: Dr, drilled; Du, dug.

Location number	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре	Date completed	Depth to water below land surface (feet)
162-79 6edd	Aler Bencher	120	18	Dee		25
	Alex Boucher		18	Dr		35
7baa 7-1-1-	R. O. Hegen	115 165	10 4	Dr	1010	30
7cbb	Jacob Jacobson	80	18	Dr	1940	35
9aaa	Arnold Bangs	100	24	Dr Dr	1900	48.79 40
9ddd 18cbb	J. L. Solsang Alfred Hagen	135		Dr	1900	40
18daa	•	210	3 4	Dr		*****
Tonaa	Oscar Krogen	210	4	Dr		*****
162-80	2					
lbcal	Elmer Damstrom	177	4	Dr	1946	120
1bca2	Do	120	4	Dr	2010	
lcbb	Chris J. Jensen	14.7	48 x 48	Du		8.39
3aad	Walter McKechnie	62	24	Dr		4.91
3abb	Test hole 958	175	5	Dr	8-54	
3dcc1	Unknown			Dr		7.13
3dec2	Test hole 959	180	5	Dr	8-54	
5aad	Anton Nesting	29	18	Dr		6.62
беъъ	A. Bowchen	120	12	Dr		
6ddd	H. VanNewkirk	100	24	Dr		8.39
Sabd	S. J. Acheson	16	48 x 48	Du	1898	10.74
8ccd	Unknown		24	Dr		8.02
8daa	Do	165	4	Dr		
9bbcl	A. Helgeson	30.5	8	Dr		4.22
9bbc2	Do	165	4	Dr		
10aad	B. Broen	165	4	Dr		
10ddd	Axel Houmann	150	18	Dr		30
llaba	Almon Lee	144	4	Dr	1946	38
14ccb	Unknown	100	18	Dr		35.67

- 39a -

Depth of well: Measured depths in feet and tenths; reported depths in feet.

Use of water: D, domestic; N, none; Obs, observation;, PS, public supply; S, stock; T, test hole.

Date of measure- ment	Use of water	Aquifer	Depth to shale (feet)	Altitude of land surface (feet)	Remarks
×					
6-10-49	D,S			1,473	
6-10-49	D,S			1,472	
6-10-49	D,S			1,483	Soft.
6-14-55	D,S	Sand			а 10
6-14-55	N	do		•••••	
	D,S			1,482	2
	D,S			1,476	Soft.
					5
6- 8-49	D,S	2		1,484	Soft.
6- 8-49	N,S			1,485	
6- 8-49	D,S	Sand		1,435	Hard, adequate.
6- 8-49	N N	Janu		1,491	in the second
	T		171	1,491	See log.
6- 8-49	N		****	1,491	200 200.
1000 A	T		178	1,490	See log.
6- 8-49	D			1,506	200 200
-	, N			1,505	
6-12-49	D,S			1,505	
6- 8-49	D,S	Clay		1,501	
6-12-49	N	0100		1,495	2
	N			1,500	Soft.
6- 8-49	Obs			1,501	
•••••	N			1,501	Soft.
•••••	N			1,492	
6- 8-49	D,S	Gravel		1,488	Hard.
6- 8-49	D,S			1,480	Soft.
6- 8-49	N			1,496	
0-0-+7					

- 390 -

TABLE 3 .-- RECORDS OF WELLS

Location number	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре	Date completed	Depth to water below land surface (feet)
<u>162-80</u> (C		165	4	Dr		40
14dcd	Leo Weber		24	Dr		10
17bbb1	S. S. Kelley	35	24	Dr	••••	8.71
17bbb2	Do	55 80	24 24	Dr	••••	10.72
17ccc1	Frank Armer	80	24 24	Dr	••••	9.68
17ccc2	Do		18	Dr	••••	6
18cddl	Archie DeMars	20	18	Dr Dr	••••	3.65
18cdd2	Do	10	10	DI		5.07
163-79						
8baa	Peter Severtson	65	18	Dr		25
16aaa	Clara Lindseth	100	2	Dr	1925	
16aad	Do	65	12	Dr	• • • •	
17abb	Gilbert Severson	9.1	12	Du		5.10
29000	Unknown	35	12	Dr	• • • •	8.91
ЗОЪсЪ	Test hole 972	60	5	Dr	9-54	
30cab	Test hole 971	70	5	Dr	9-54	
30cbel	U. S. Fish & Wildl	ife				ж.
J	Service	65	3	Dr		
30cbc2	Test hole 950	110	5	Dr	8-54	
30cbd	Test hole 962	110	3 5 5 14	Dr	8-54	
30ccb	Test hole 975	110	5	Dr	9-54	
30ddc	A. C. Anderson	123		Dr	1925	28.47
31aba	Test hole 948	90	5	Dr	8-54	
31bab	Test hole 947	100	5	Dr	8-54	
31bbb	Test hole 946	110	5	Dr	8-54	
32bbb	Test hole 949	130	5 5 5 5 5 5 5	Dr	8-54	
33dbd	Test hole 970	110	5	Dr	9-54	
33dcal	Test hole 966	120	5	Dr	9-54	* * * * * *
33dea2	Test hole 968	110	5	Dr	9-54	
33dcd1	Test hole 965	130	5. 55 55 55 55	Dr	9-54	
33dcd2	Test hole 969	120	5	Dr	9-54	
33ddb	Test hole 963	110	5	Dr	8-54	•••••
33ddc1	Test hole 964	100	5	Dr	8-54	
33ddc2	Test hole 967	110	5	Dr	9-54	

- 40a -

AND TEST HOLES -- Continued

Date of measure- ment	Use of water	Aquifer	Depth to shale (feet)	Altitude of land surface (feet)	Remarks
••••					
6-11-49	D,S			1,491	Soft.
6-12-49	D			1,506	
6-12-49	S			1,506	
6-12-49	N			1,500	
6-12-49	D			1,500	2
6-12-49	D			1,501	
6-12-49	N		• • • •	1,501	
6-14-55	S				Hard.
	D				Hard, adequate.
	D				Hard.
6-14-55	D,S	Gravel			Soft.
6-14-55					
	Т			1,415	See log.
	T		• • • •	1,415	Do.
	D	Gravel		1,415	See chemical analysis.
	T		105	1,421	See log.
	T		101	1,416	Do.
	T		105	1,425	Do.
6-14-55	S	Gravel			Hard.
	T		86	1,425	See log.
	T		96	1,415	Do.
	T		101	1,420	Do.
	Т		126	1,482	Do.
	T		102	1,482	Do.
	Т		108	1,482	Do.
	T			1,482	See log. Green clay 101-110 feet.
	Т		118	1,482	See log.
	T			1,482	Do.
	T		101	1,482	Do.
	Ţ		96	1,482	See log and chemical analysis.
	T		110	1,482	See log.

- 40b -

Location number	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре	Date completed	Depth to water below land surface (feet)
163 - 79 (0	Cont.)			<u></u>		
33ddc3	Wanda School	•••	24	Dr	1954	9.47
163-80				2	×.	
lbba	David Henderson	120	18	Dr	••••	11.18
2cdd	Frank Deschampe	140	18	Dr	1910	12
5dcd	Virgil Fredrickson	6.8	48 x 72	Du		2.98
7cac	Unknown		18	Dr		5.53
7cdb	Chas. Patalas	80	24	Dr		6
9ddd	Rod Deschamp	12	24	Du		4.78
10abbl	E. Deschamp	100	24	Dr		15
10abb2	Do	14.7	24	Du		5.67
10ddc1	Oscar Hulse	35	18	Dr		12
10ddc2	Do	140	5	Dr		34.80
10ddc3	Do	130	18	Dr	1943	20
llaba	Zach Brooks Drillin	g				
12	Company	3,760		Dr	1952	
14bcb	Darrell Hulse	135	24	Dr		25
14cddl	John Frazier	162	24	Dr	1912	6
14cdd2	Test hole 936	140	5	Dr	7-54	
14cdd3	John Frazier	30	12	Dr	••••	6.02
15baa	Test hole 935	150	5 5	Dr	7-54	
15caa	Test hole 934	160	5	Dr	7-54	
15dee	Test hole 933	158	5	Dr	7-54	
19bbb	Henry Robillard	43.9	24	Dr		2.91
19ccc	Unknown	20	24	Dr		4.17
20abbl	Orville Deschamp	90	- 24	Dr		
20abb2	Do	21	48	Du		
21ccc	Mr. Berentson	125	18	Dr	****	2.30
21dad	Test hole 937	180	5 5 18	Dr	7-54	
21 d dd	Test hole 931	170	5	Dr	7-54	•••••
22bca	Andrew Nielson	55	18	Dr		7.87
22bdb	Do	55	18	Dr	••••	•••••
22caa	Test hole 932	170	5	Dr	7-54	

- 41a -

	Date of measure- ment	Use of water	Aquifer	Depth to shale (feet)	Altitude of land surface (feet)	Remarks
	6-14-55	D	Sand	••••	••••	
t. S	6- 7-49	D,S	••••		1,492	171-71 to star welt for antablan
e 2	6- 7-49	S			1,492	Alkali taste; unfit for drinking.
	6- 7-49	D,S			1,493	
	6- 8-49	N			1,496	
	6- 9-49	D,S			1,496	
	6-25-49	Ď			1,500	
	6- 7-49	S			1,500	
	6- 7-49	D			1,500	
	6- 7-49	D			1,493	
	6- 7-49	N			1,493	
	6- 7-49	S,Obs			1,490	
		т			1,490	
					1,489	
	6- 7-49	D,S			1,485	Gas; blackish color. See chemical
	6- 7-49	S	••••		±,+0)	analysis.
		T			1,492	See log.
15	6- 7-49	D			1,485	
		Ť		142	1,480	See log.
		T T		154	1,496	Do.
		T		152	1,490	See log. Green clay at 153 feet.
	· · · · · ·				1,503	
	6- 9-49	D,S			1,497	
	6- 9-49	N	Cond		1,497	
		N	Sand		1,497	ч х
	· · · · · · · · · · · · · · · · · · ·	D,S			1,495	
	6- 7-49	D,S		166	1,492	See log.
		T		168	1,492	Do.
		T			1,491	
	6-25-49	D,S				
		S		158	1,495	See log.
		T		158	1,490	Dea 100.

- 41b -

Location number	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре	Date completed	Depth to water below land surface (feet)
163-80 (0	Cont.)					
22cdc1	Melvin Tolstad	80	18	Dr		4.52
22cdc2	Do	80	18	Dr		4.55
22cdd	Test hole 930	170	5	Dr	7-54	••••
22ddd	Chester Hulse	85	18	Dr		3
23aab	John Frazier	162	18	Dr	1937	19.46
23dcc	Test hole 953	160	5	Dr	8-54	
24dac	Test hole 973	50	5 5 5 6 6 6	Dr	9-54	
25bbb	Test hole 952	150	5	Dr	8-54	
25cccl	City of Westhope	146	6	Dr	1953	
25ccc2	Westhope well #2	148	6	Dr	1954	98
25ecd	City of Westhope	160	6	Dr	1953	84
25cdd1	Do	160	6 6	Dr	1946 1946	48
25cdd2	Do	155	0	Dr Dr	9 - 54	40
25dac	Test hole 974	50 150	5	Dr	8-54	
26acc	Test hole 955 Test hole 954	151	5	Dr	8-54	
26acd 26bab	Test hole 956	150	5 5 5 5	Dr	8-54	
26bcc	Unknown	100 +	18	Dr		2.46
26cdcl	C. A. Matthews	70	18	Dr		2.21
26cdc2	Do	30	24	Dr		4
26daa	Test hole 951	150	5	Dr	8-54	*****
26dac	Test hole 976	150	5 5 6	Dr	8-54	
26ddd	Westhope well #1	149		Dr	1946	49
27aaa	Chester Hulse	67	24	Dr		2.80
27add	Unknown	100	18	Dr	••••	.85
276 dd 27ccc	Test hole 929 Test hole 941	170 180	- 5 - 5	Dr Dr	7-54 7-54	• • • • • • • • • • • • •
		ж Ж		D		
27cda	City of Westhope	240	6	Dr Dr	1953 7 - 54	
28ecc 28dcc	Test hole 939	200 190	2	Dr Dr	7-54	• • • • • • •
20aec 30bbb	Test hole 940 Chas. McDougal	38	5 5 24	Dr	****	3.69
JODDD	onas. menougar	20	<u>-</u> +	<i>D</i> *		5.07

- 42a -

а

Date of . measure- ment	Use of water	Aquifer	Depth to shale (feet)	Altitude of land surface (feet)	Remarks
27					
6-25-49	D			1,496	,
6-25-49	N			1,496	
	Ť		160	1,496	See log. Sandy green clay at
******	+		200	-,,,,,,	162 feet.
6- 7-49	D	••••		1,491	
6- 7-49	N			1,470	
	Т		160	1,492	See log.
	т			1,430	Do.
	T		139	1,481	See log. Green clay at 139 feet.
	T				See log.
12 -54	PS				Do.
9 -53	T				Do.
	T		157		Do.
5 -53	T		->1		Do.
J -JS	Ť			1,422	Do.
	Ť		146	1,489	See log. Green shale at 146 feet
	Ť		151	1,490	See log. Green shale at 151 feet
	Ť		150	1,490	See log. Green shale at 150-160
	-		- / 0		feet.
6- 7-49	N			1,495	
6- 8-49	N			1,489	* * _*
6- 8-49	N			1,489	5 × 5
	T		150	1,490	See log.
	Ŧ		150	1,490	Do.
	PS				See log. Chemical analysis.
6- 7-49	S			1,491	5
6- 7-49	Ň			1,494	
	T		161	1,496	See log. Chemical analysis.
	Ť		172	1,497	See log. Sandy green shale at 17
	-				177 feet.
	т		165		Gas at 150 feet. See log.
	Ť		193	1,497	
	Ť		185	1,502	
6- 9-49	D,S		~	1,498	

•

- 42b -

Location number	Owner or name	Depth of well (feet)	Diameter or size (inches)	Туре	Date completed	Depth to water below land surface (feet)
163-80 (0	Cont.) Alfred Hulse	40	18	Dr		3.46
30ded	Unknown	17	48 x 48	Du		3.22
30dda	Don Cameron	16	24	Dr		6.87
3laabl	Don Cameron	180	4	Dr	1945	60
3laab2	M. Moum	150	4	Dr		
31ddd 32666	Test hole 938	190	5	Dr	7-54	
52000	2020 /5		-		2	
32bbdl	Clarence Lodoen	18	8	Dr		11.20
32bbd2	Do	250	2.5	Dr	1928	60
33abb	E. A. Trimble	26	24	Dr		10
34abb	Great Northern		_	_		a 01
	Railroad	13.2	18	Dr		3.84
34baal	Collin Seiffert	42	18	Dr		4.79
34baa2	Do	120	18	Dr		4.98
34baa3	Do	16.2	24	Dr		1.15
34baa4	Test hole 928	180	5	Dr	7-54	
34000	Roger Conway	120	24	Dr		30
34dadl	Albert Madsen	18	8	Dr		8
34dad2	Do	22	24	Dr		10.76
34dbb	Test hole 957	170	5	Dr	8-54	
35aab	Test hole 961	150	5	Dr	8-54	
35abb	Test hole 943	160	5 5 24	Dr	7-54	
35bab	L. Rosendahl	80	24	Dr		20
35bbb	Test hole 942	170	5	Dr	7-54	
35cbc	Unknown	27.2	5 48	Du		4.37
36baa	Test hole 945	140	5	Dr	8-54	
36bba	Test hole 960	150	5 5 5	Dr	8-54	
36bbb	Test hole 944	161	5	Dr	8-54	

- 43a -

×

Date of measure- ment	Use of water	Aquifer	Depth to shale (feet)	Altitude of land surface (feet)	а 	Remarks
				2	3	
6- 9-49	S			1,497		
6- 9-49	D,S	••••		1,496		
6- 9-49	D			1,501		
6- 9-49	S			1,501	Soft.	
	ŝ			1,504		
	Ť	••••	186	1,500	See log. 186-188	Sandy green shale at feet.
6- 9-49	D			1,505		
6- 9-49	S			1,504	Soft.	*
6- 7-49	D			1,499		
5-27-50	Obs			1,497		
6- 8-49	D			1,495		
6- 8-49	N			1,495		
6- 8-49	S			1,495	8	
	T	••••	179	1,498	See log. 178-179	Sandy green shale at feet.
6- 8-49	D,S			1,498		
6- 8-49	D			1,495		
6- 8-49	S			1,496		
	T		166	1,495	See log.	
	T		••••	1,490	See log.	Green clay 145-147 feet.
	T		155	1,490	See log.	Chemical analysis.
6- 8-49	S	* * * *	••••	1,496	0	
	T		161	1,496	See log.	
6- 8-49	N		••••	1,496	Can Jar	4
	T		131	1,485	See log.	а. С
	T		139	1,487	Do.	
******	т		149	1,491	Do.	

- 43b -

TABLE 4.--LOGS OF WELLS AND TEST HOLES

162-80-3abb Test hole 958

Ī	Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Ċ	Slacial Lak	e Souris deposits		
		Topsoil, sandy, black	2	2
		Clay, yellow, fine to medium gravel	35	37
1	fill and as:	sociated sand and gravel deposits		- 1
		Clay, gray, and fine to medium gravel	67	104
		Gravel, fine, clean	3	107
		Clay, gray, and fine to medium gravel	3	110
	*	Gravel, fine to medium	2	112
		Clay, gray, and fine gravel	56	168
C	annonball(Fox Hil	?) member of the Fort Union formation or ls(?) sandstone		
		Clay, smooth, gray	2	1 (7)
P	ierre shale		3	171
		Shale, gray	4	175

162-80-3dcc2

Test hole 959

Lake Souris deposits		
Topsoil, sandy, black	2	2
Clay, yellow; fine to medium gravel	36	2 38
Till and associated sand and gravel deposits		
Clay, gray, and fine to medium gravel	138	176
Cannonball(?) member of the Fort Union formation or		
Fox Hills(?) sandstone		
Clay, smooth, gray	2	178
Pierre shale	-	-10
Shale, gray	2	180
	-	100

163-79-30bcb Test hole 972

Lake Souris deposits		
Topsoil, black	l	1
Clay, yellow, oxidized; fine to medium		
gravel and shale pebbles	15	16
Till and associated sand and gravel deposits		
Clay, gray, and fine to medium gravel		
and shale pebbles	44	60

163-79-30cab Test hole 971

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Lake Souris	Topsoil, black Clay, sandy, brown Clay, yellow, and fine to medium gravel	1 1	1 2
Alluvium	and shale pebbles	3	5
ATTUVIUM	Sand, coarse, and fine to medium gravel Sand, medium to coarse, silty, contains	5	10
	shell fragments	10	20
	Clay, plastic, gray, and fine gravel and shale pebbles Sand, medium to coarse, silty; fine	25	45
Till and ass	gravel sociated sand and gravel deposits	10	55
	Clay, gray, and fine to medium gravel and shale pebbles	15	70

163-79-30cbc2 Test hole 950

'es	+	ha		Ω	50
CO	U.	mO.	TC.	7	50

1	1
2	3
8	11
10	21
- 144 - 1442 14	
4	25
5	30
3	
10	40
65	105
5	110
	4 5 10 65

163-79-30cbd Test hole 962

Formation Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
Lake Souris deposits(?)*		1. 100 000 (
Clay, gray; fine to medium gravel	5	5
Sand, fine to medium; fine gravel	·	10
Clay, gray; fine to coarse sand; fine	,	10
gravel	10	20
Clay, gray-brown; fine to medium gravel		
and shale pebbles		35
Clay, smooth, gray	27	62
Sand, fine to medium, gray, silty	3	65
Till and associated sand and gravel deposits		
Clay, gray, and fine gravel and coarse		
sand	35	100
Cannonball(?) member of the Fort Union formation or		
Fox Hills(?) sandstone		
Clay, smooth, gray	1	101
Pierre shale		
Shale, gray	9	110

*Possibly intermixed with alluvium

163-79-30ccb Test hole 975

Lake Souris deposits		
Topsoil, black	2	2
Clay, yellow; medium to coarse sand	28	10
Alluvium		
Gravel, fine; medium to coarse sand	5	15
Sand, medium to coarse; clay, yellow;		8
fine gravel	15	30
Till and associated sand and gravel deposits		
Clay, gray, and medium to coarse sand		
and fine gravel	25	55
Clay, gray, and fine sand	15	70
Clay, gray, and medium to coarse sand	-	
and fine gravel	39	109
Pierre shale		
Shale, gray	1	110

163-79-31aba Test hole 948

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Lake Souris	deposits Road fill Clay, smooth, light-gray Clay, sandy, gray	12 9 10	12 21 31
Alluvium	Sand, fine to coarse, clayey Sand, fine to medium, clayey	4 35	35 70
Till and as	sociated sand and graveldeposits Clay, gray, and fine to medium gravel	16	86
Pierre shal	e Shale, gray	4	90

163-79-31bab Test hole 947

Lake Souris deposits	0	0
Road fill	8	8
Clay, yellow; fine to medium gravel	2	10
Clay, gray-green	10	20
Alluvium		
Sand, fine to medium, silty	17	37 48
Clay, sandy, gray		48
Sand, coarse; fine gravel	7	55
Till and associated sand and gravel deposits		
Clay, gray, and fine to medium gravel	L 27	82
Sand, medium to coarse; fine gravel	4	86
Clay, gray, and fine to medium gravel	10	96
		-
Pierre shale	4	100
Shale, gray		200

- 47 -

163-79-31bbb Test hole 946

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Lake Souris			
	Road fill	8	8
	Clay, smooth, gray	18	26
	Clay, smooth, light-gray	22	48
	Clay, smooth, gray	17	65
Till and as:	sociated sand and gravel deposits		65.
	Sand, medium to coarse; fine gravel	3	68
	Clay, gray, and fine gravel	3 8	76
	Sand, coarse, and fine to medium gravel	2	76 78
	Clay, gray, and fine to medium gravel	23	101
Pierre shale	9		
	Shale, gray	9	110

163-79-32bbb Test hole 949

Lake Souris deposits		
Topsoil, black	1	1
Clay, smooth, light-gray	3	4
Clay, yellow, oxidized; fine to medium	_	
gravel	27	31
Till and associated sand and graver deposits		-
Clay, gray, and fine to medium gravel	95	126
Pierre shale		
Shale, gray	4	130

163-79-33dda

Test hole 970

Lake Souris deposits		
Topsoil, black	1	1
Clay, yellow; fine to medium gravel	15	16
Till and associated sand and gravel deposits		
Clay, gray; fine to medium gravel and		
shale pebbles	86	102
Pierre shale		
Shale, gray	8	110

163-79-33dcal Test hole 966

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Lake Souris	deposits	e e	
	Topsoil, black	l	1 2
	Clay, smooth, gray	1	2
mill and ac	Clay, yellow, oxidized; fine to medium gravel and shale pebbles sociated sand and gravel deposits	15	17
TITI and as	Clay, gray, and fine to medium gravel and shale pebbles Sand, coarse; fine gravel and shale	կկ	61
	pebbles	5	66
×	Clay, sandy, gray, and fine gravel and shale pebbles Clay, gray, and fine gravel and angular	42	108
	shale pebbles	12	120

163-79-33dca2 Test hole 968

Lake Souris deposits Topsoil, black	l	1
Clay, yellow; fine to medium gravel and shale pebbles Till and associated sand and gravel deposits	25	26
Clay, gray; fine gravel; coarse to very coarse sand, some thin fine sand beds Cannonball(?) member of the Fort Union formation or	75	101
Fox Hills(?) sandstone Clay, sandy, green; fine gravel Clay, hard, green; medium sand	8 1	109 110

163-79-33dcdl Test hole 965

Formation Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Lake Souris deposits Road fill	2	2
Clay, yellow, oxidized; fine to medium gravel and shale pebbles	m	- 38
Till and associated sand and gravel deposits Clay, gray, and fine to medium gravel and shale pebbles		57 60
Gravel, fine to medium Clay, gray, and fine gravel, and medi:		60
to coarse sand	•• 58	118
Pierre shale Shale, gray	12	130

163-79-33dcd2 Test hole 969

Lake Souris deposits	-	_
Topsoil, black	1	1
Clay, light-gray	3	4
Clay, yellow; fine to medium gravel	20	36
and shale pebbles	32	20
Till and associated sand and gravel deposits		
Clay, gray; fine to medium gravel and		
shale pebbles	32	68
Sand, medium to coarse; fine gravel	651 (1 5 1)	
and shale pebbles	10	78
Clay, gray, and fine gravel and coarse		
sand	34	112
Clay, gray, and medium to coarse sand.	8	120
cray, gray, and meatum to coarse same.	•	200

163-79-33ddb Test hole 963

Formation	Material	Thickness	Depth
		(feet)	(feet)
Lake Souris	-		
	Road fill	2	2
	Clay, yellow; fine to medium gravel and		
	shale pebbles	41	43
Till and as	sociated sand and gravel deposits		
10	Clay, gray, and fine to medium gravel	17	60
	Sand, fine to medium, silty	10	70
•	Clay, gray, and fine to medium gravel	31	101
Pierre shal	e		
	Shale, gray	9	110

163-79-33ddcl Test hole 964

Lake Souris deposits		
Road fill	2	2
Clay, yellow, oxidized; fine to medium		
gravel	36	38
Till and associated sand and gravel deposits	100	
Clay, gray; fine to medium gravel	28	66
Gravel, fine to medium, silty	8	74
Clay, gray, hard at base	26	100

163-79-33ddc2 Test hole 967

	Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	Depth (feet)
	Lake Souris	deposits		
		Topsoil, black Clay, yellow; fine to medium gravel	2	2
		and shale pebbles Clay, brown; fine to medium gravel and	13	15
	Till and ass	shale pebbles	26	41
		Clay, gray, and fine gravel and shale		
		pebbles	17 -	58
e.		Gravel, fine; medium to coarse sand	2	60
		Sand, gray; gravel, silty Sand, medium to coarse; fine gravel,	5	65
		silty Clay, gray, and coarse sand, fine	10	75
		gravel and shale pebbles	31	106
	Pierre shale	Clay, gray-green; coarse sand	3	109
			-	
		Shale, gray	1	110

×.

163-80-14cdd2 Test hole 936

Lake Souris deposits		
Topsoil, black	2	2
Clay, yellow; fine to medium gravel	24	26
Till and associated sand and gravel deposits		
Clay, gray; fine to medium gravel	91	117
Gravel, fine; coarse sand, clean	11	128
Clay, gray, and fine to medium gravel.	8	136
Pierre shale		-50
Shale, gray	4	140

- 52 -

163-80-15baa Test hole 935

Formation	Material	Thickness	Depth
	×	(feet)	(feet)
7 . 1	Jeneoita	· .	
Lake Souris		8	
	Topsoil, black	2	2
	Sand, fine to medium, silty	1	3
	Clay, gray	- 1 ·	4 -
	Clay, yellow; fine to medium gravel		16
Till and as	sociated sand and gravel deposits		
	Clay, gray, and fine to medium gravel	74	90
	Gravel, fine; coarse sand	10	100
	Clay, gray, and fine to medium gravel	8	108
	Gravel, fine, silty	3	111 -
	Clay, gray, and fine to medium gravel	31	142
Pierre shal	e		
	Shale, gray	8	150

163-80-15caa Test hole 934

Lake Souris deposits		14
Topsoil, sandy, gray	2	2
Sand, fine to medium, silty	3	5
Clay, yellow; fine to medium gravel	16	21
Till and associated sand and gravel deposits		3) (1)
Clay, gray, and fine to medium gravel	133	154
Pierre shale		
Shale, gray	6	160

163-80-15dcc Test hole 933

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Lake Souris		2	2
	Topsoil, black Clay, smooth, yellow	3	5
mill and ag	Clay, yellow; fine to medium gravel sociated sand and gravel deposits	29	3 5 14
TILL and as	Clay, gray, and fine to medium gravel Sand, medium to coarse; fine gravel,	61	75
	silty	6	81
	Clay, gray, and fine to medium gravel	69	150
Pierre shal	e Shale, gray	8	158

163-80-21dad

Test hole 937

Lake Souris deposits		*
Topsoil, black	l	1
Clay, sandy, yellow	2	3
Clay, yellow; fine to medium gravel	20	1 3 23
Till and associated sand and gravel deposits		
Clay, gray, and fine to medium gravel	43	66
Sand, medium coarse; fine gravel	2	68
Sand, coarse; fine gravel, silty	21	89
Clay, gray, and fine to medium gravel	35	124
Sand, coarse; fine gravel and shale		
pebbles	2	126
Clay, gray, and fine to medium gravel	30	156
Sand, fine to coarse; fine gravel	2	158
Clay, gray, and fine to medium gravel	4	162
Sand, fine to coarse; fine gravel	4	166
Pierre shale		-
Shale, gray	14	180

- 54 -

163-80-21ddd Test hole 931

Formation	Material	Thickness	Depth
		(feet)	(feet)
Tulu Countr	domosite		
Lake Souris	Topsoil, black	2	
			- 2 4
	Clay, smooth, yellow	2	
	Clay, yellow; fine to medium gravel	26	30
Till and as	sociated sand and gravel deposits		
A offe also also weather and the second	Clay, gray, and fine to medium gravel	32	62
	Sand, medium to coarse; fine to medium	5-	
		2	65
	gravel, silty		65
.8	Clay, gray, and fine to medium gravel	28	93
	Sand, medium to coarse; fine gravel,		
	silty	3	96
	Clay, gray, and fine gravel	22	118
	Sand, medium to coarse; fine gravel	2	120
		22	142
	Clay, gray, and fine to medium gravel	Contraction of the	2
2	Sand, coarse; fine to medium gravel	4	146
	Clay, gray, and fine gravel	22	168
Pierre shal	e		
	Shale, gray	2	170

163-80-22caa Test hole 932

Lake Souris deposits		
Sand, fine; clay, gray	5	5
Clay, yellow; fine to medium gravel	6	11
Sand, medium to coarse; clay, yellow;		
fine to medium gravel	2	13 18
Clay, yellow; fine to medium gravel	5	18
Till and associated sand and gravel deposits		12
Clay, gray and fine to medium gravel	64	82
Sand, fine to coarse; fine to medium		1366
gravel, silty	3	85 113
Clay, gray, and fine to medium gravel	28	113
Sand, coarse; fine to medium gravel,		-
clean	5	118
Clay, gray, and fine to medium gravel	40	158
Pierre shale		
Shale, gray	12	170

- 55 -

163-80-22cdd Test hole 930

Formation Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
	(2000)	(1000)
Lake Souris deposits		
Topsoil, black	•• 3	3
Gravel, fine; shale pebbles	1	4
Clay, yellow; fine to medium gravel.	22	3 4 26
Till and associated sand and gravel deposits	-	
Clay, gray, and fine to medium grave.	1. 78	104
Sand, coarse; fine to medium gravel,		
silty	2	106
Clay, gray, and fine to medium grave.	1. 54	160
Cannonball(?) member of the Fort Union formation	or	
Fox Hills(?) sandstone		
Clay, smooth, gray	2	162
Clay, sandy, gray-green		170

163-80-23dcc Test hole 953

Lake Souris deposits		
Topsoil, sandy, black	2	2
Clay, yellow, oxidized; fine to medium	12	
gravel	20	22
Till and associated sand and gravel deposits		
Clay, gray, and fine to medium gravel.	45	67
Sand, medium to coarse; fine gravel,		
silty	3 64	70 134
Clay, gray, and fine to medium gravel.	64	134
Gravel, fine to medium	15	149
Pierre shale		
Shale, gray	11	160

163-80-24dac Test hole 973

Lake Souris deposits Topsoil, black	l	Ĺ
Clay, yellow, oxidized; fine to medium gravel	15	16
Till and associated sand and gravel deposits Clay, gray; fine gravel	14	30
Clay, gray; coarse sand and fine to medium gravel	20	50

163-80-25bbb Test hole 952

	Formation Material	Thickness	Depth
w.		(feet)	(feet)
	Lake Souris deposits Clay, yellow, oxidized; fine to medium		
	gravel Till and associated sand and gravel deposits	27	27
	Clay, gray, and fine to medium gravel. Pierre shale	112	139
	Shale, gray	11	150

163-80-25ccc1

Municipal test hole (Log furnished by C. A. Simpson and Sons, Bisbee, N. Dak.)

Lake Souris deposits		
Clay, yellow	25	25
Till and associated sand and gravel deposits		-
Clay, sandy, blue	38	63
Sand and clay, blue	59	122
Sand, silty	12	134
Sand and gravel	11	145
Clay with gravel, blue	1	146

163-80-25ccc2

Westhope City well #2 (Log furnished by C. A. Simpson and Sons, Bisbee, N. Dak.)

Lake Souris deposits		
Topsoil, black	1	1
Clay, yellow	34	35
Till and associated sand and gravel deposits		
Clay, blue	25	60
Clay, sandy, blue	23	83
Clay, very sandy, blue	17	100
Clay and sand	20	120
Gravel and clay	15	135
Gravel	11	146
Pierre shale		
Shale, blue	2	148
	Topsoil, black. Clay, yellow. Till and associated sand and gravel deposits Clay, blue. Clay, sandy, blue. Clay, very sandy, blue. Clay and sand. Gravel and clay. Pierre shale	Topsoil, black1Clay, yellow

163-80-25ccd Municipal test hole (Log furnished by C. A. Simpson and Sons, Bisbee, N. Dak.)

Formation	Material	Thickness	Depth
	R.	(feet)	(feet)
	· · · · ·		
Lake Souris			
	Topsoil, black	1	1.
	Clay, sandy, light-yellow	2	3
	Clay, yellow	19	22
Till and as	sociated sand and gravel deposits		
	Clay, sandy, blue	36	58
	Clay, gravelly	48	106
	Sand, fine to coarse	5	111
	Clay, gravelly	n	122
	Clay, gray	6	128
	Clay, sandy, gray	2	130
	Sand, fine to coarse, silty	ī	131
D ¹		-	TCT.
Pierre shal	-	00	160
	Shale, blue	29	160

163-80-25cdd1

Municipal test hole (Log furnished by C. A. Simpson and Sons, Bisbee, N. Dak.)

Lake Souris deposits		
Topsoil, black	2	2
Clay, yellow	23	25
Till and associated sand and gravel deposits		<i>C</i> •
Clay, blue	35	60
Clay, sandy, blue	60	120
Clay, very sandy	5	125
Sand, coarse	2	127
Clay, sandy, blue	15	142
Sand, (escaping gas)	l	143
Sand and clay, interbedded, water and		
gas in the sand layers	10	153
Clay, blue	4	1.57
Pierre shale	150	
Shale, blue	3	160

- 58 -

163-80-25cdd2 Municipal test hole (Log furnished by C. A. Simpson and Sons, Bisbee, N. Dak.)

Formation	Material	Thickness	Depth
		(feet)	(leet)
Lake Souris	deposits		-
	Topsoil, black	1	1
mall and or	Clay, sandy, yellow sociated sand and gravel deposits	29	30
TILL and as	Clay, sandy, blue	35	65
	Clay, Salluy, Dide.		120
	Clay, very sandy, blue		124
	Clay, sandy, blue	4	
	Gravel		126
	Clay, very sandy, blue	29	155

¹⁶³⁻⁸⁰⁻²⁵dac Test hole 974

Alluvium

Sand, fine to coarse; yellow clay; fine gravel	8	8
Sand, very coarse to medium; fine gravel	4	12
Till and associated sand and gravel deposits Clay, gray, and fine to medium gravel	38	50

163-80-26acc Test hole 955

Lake Souris deposits	-	
Topsoil, black	1	T
Clay, sandy, brown	2	3
Clay, yellow; fine to medium gravel	13	16
Till and associated sand and gravel deposits Clay, gray, and fine to medium gravel	108	124
Sand, coarse; fine to medium gravel, silty Clay, gray, and fine gravel	3 19	127 146
Pierre shale Shale, gray	4	150

- 59 -

. .

163-80-26acd Test hole 954

Formation Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Lake Souris deposits Clay, sandy, brown Clay, sandy, dark-gray Clay, smooth, yellow Till and associated sand and gravel deposits	2 3 12	2 5 17
Clay, gray, and fine to medium gravel Pierre shale	133	150
Shale, gray	1	151
163-80-26bab Test hole 956		
Lake Souris deposits Topsoil, sandy, black Clay, sandy, brown Clay, yellow, oxidized; fine gravel	2 2 26	2 4 30
Till and associated sand and gravel deposits Clay, gray, and fine gravel Pierre shale	119	149
Shale, gray	l	150
163-80-26daa Test hole 951		
Lake Souris deposits Clay, sandy, gray	<u> </u>	
Clay, light-gray; fine gravel Clay, yellow; fine to medium gravel Till and associated sand and gravel deposits	2 2 24	2 4 28
Clay, gray, and fine to medium gravel Sand, fine, silty Clay, gray, and fine to medium gravel	34 3 50	62 65 115
Clay, gray, and fine to medium gravel, hard drilling Pierre shale	26	141
Shale, gray	9	150

- 60 -

163-80-26dac Test hole 976

Formation Material	Thickness (feet)	Depth (feet)
Lake Souris deposits		
Topsoil, black	1	1
Clay, yellow	40	41
Till and associated sand and gravel deposits	39.	
Clay, gray, and fine to medium gravel	3	
and shale pebbles	29	70
Clay, gray; medium to very coarse		
sand	10	80
Gravel, fine; medium to coarse sand,		
silty	15	95
Clay, gray, and fine to medium gravel		
and shale pebbles	49	144
Cannonball(?) member of the Fort Union formation or Fox Hills(?) sandstone		
	- *	-1-
Sand, medium to coarse, silty, gray Pierre shale	5	149
Shale, gray	1	1 50
STATC, Bradesseeseeseeseeseeseeseeseeseeseeseesees	*	150
163-80-26ada1		
Westhope City well #1		
(Log furnished by C. A. Simpson		
and sons, Bisbee, N. Dak.)		3
Lake Souris deposits		
Clay, yellow	35	35
Till and associated sand and gravel deposits		
Clay, blue	25	60
Clay, sandy, blue	23	83
Gravel	4	87
Clay, sandy, blue	52	139
Sand, coarse; gravel	10	149

- 61 -

163-80-27bdd Test hole 929

Formation	Material	Thickness (feet)	Depth (feet)
Lake Souris	deposits Topsoil, sandy, black	0	
	Topborry bandy, brackssssssssssssss	2	2
	Sand, fine, silty	1	3
	Clay, light-gray	1	3 4
Till and as	Clay, yellow; fine to medium gravel sociated sand and gravel deposits	20	24
	Clay, gray, and fine to medium gravel Sand, medium to coarse; fine to medium	35	59
	gravel, silty	9	68
	Clay, gray, and fine to medium gravel	93	161
Pierre shale	9		
	Shale, gray	9	170

163-80-27ccc Test hole 941

Lake Souris deposits		37
Topsoil, sandy, black	1	1
Clay, sandy, brown	2	3
Clay, gray	2	3 5
Clay, yellow; fine to medium gravel	10	15
Till and associated sand and gravel deposits		
Clay, gray, and fine to medium gravel	112	127
Sand, fine to medium, silty	3 40	130
Clay, gray, and fine to medium gravel	40	170
Cannonball(?) member of the Fort Union formation or		-
Fox Hills(?) sandstone		
Clay, smooth, gray	2	172
Clay, sandy, gray	5	177
Pierre shale		
Shale, gray	3	180

163-80-27cda (Log furnished by C. A. Simpson and Sons, Bisbee, N. Dak.)

Formation	Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
		(,	a and an an an a
Lake Souris	deposits	1	1
	Topsoil, black	1 7	1 8 18
	Clay, sandy, gray		10
	Clay, yellow	10	TO
mill and as	ssociated sand and gravel deposits		
TILL and ca	Clay, blue	36 14 70	54 68
	Clay, Diuc.	14	68
	Clay, sandy, gray	70	138
	Clay, gray; gravel		
	Sand, silty	12	150
	Clay, gray; gravel	15	165
Pierre sha	Le		240
	Shale, gray	75	240

163-80-28ccc Test hole 939

Lake Souris deposits Topsoil, sandy, brown Clay, light-gray Clay, yellow; fine to medium gravel	2 2 20	2 4 24
Till and associated sand and gravel deposits Clay, gray, and fine to medium gravel Sand, fine to coarse, silty Clay, gray, and fine to medium gravel Cannonball(?) member of the Fort Union formation or	98 3 62	122 125 187
Fox Hills(?) sandstone Clay, smooth, gray Clay, sandy, green	5 1	192 193
Pierre shale Shale, gray	7	200

163-80-28dcc Test hole 940

Formation	Material	Thickness (feet)	Depth (feet)
Lake Souris			
	Topsoil, sandy, black	2	2
	Clay, light-gray	ī	2
	Clay, sandy, gray	2	2 3 5 14
	Clay, sandy, yellow.	9	14
Till and as:	sociated sand and gravel deposits	-	
	Clay, gray, and fine to medium gravel	110	124
	Sand, medium to coarse; fine to medium	2	
5	gravel, silty	4	128
	Clay, gray, and fine to medium gravel	6	134
	Sand, medium to coarse; fine to medium		-
	gravel	2	136
Pierre shale	Clay, gray, and fine to medium gravel	49	185
rierre snale			
	Shale, gray	5	190

163-80-32bbb Test hole 028

1.6	28	т.	ho	0	0	28
	-	~	ho.		2.	JU

Toko Counta Jonardan		
Lake Souris deposits		
Topsoil, black	2	2
Clay, sandy, yellow	7	9
Clay, yellow; fine to medium gravel	14	23
Till and associated sand and gravel deposits	**	رے ،
Clay, gray, and fine to medium gravel	47	70
Sand, fine to medium; fine gravel	ż	72
Clay, gray, and fine to medium gravel		75
Sand, medium to coarse; fine gravel	3 3	78
Clay, gray, and fine to medium gravel	3	78 81
Sand, fine to coarse, silty; fine to	5	OT
medium gravel	2	83
Clay, gray, and fine to medium gravel.	103	186
Cannonball(?) member of the Fort Union formation or	205	100
Fox Hills(?) sandstone		
Clay, sandy, green	2	188
Pierre shale	-	100
Shale, gray	2	190
		290

.

163-80-34baa4 Test hole 928

Formation	Material	Thickness (feet)	Depth
		(leet)	(feet)
Lake Souris			
	Topsoil, sandy, black	2	2
	Clay, light-gray	1	2 3 5
	Sand, fine	2	5
	Clay, yellow	12	17
Till and as	sociated sand and gravel deposits		
	Clay, gray, and fine to medium gravel	45	62
	Sand, medium to coarse; fine gravel	2	64
	Clay, gray, and fine to medium gravel	96	160
	Sand, medium to coarse; fine gravel,		
	silty	2	162
	Clay, gray, and fine to medium gravel	5	167
Cannonball(?) member of the Fort Union formation or		•
Fox Hil	lls(?) sandstone	Ξ.	
	Clay, gray to green; fine gravel	12	179
Pierre shale			-12
2	Shale, gray	1	180

163-80-34dbb Test hole 957

Lake Souris deposits		
Topsoil, sandy, black	2	2
Clay, sandy, brown	2	4
Clay, yellow; fine to medium gravel and		
shale pebbles	13	17
Till and associated sand and gravel deposits		
Clay, gray, and fine to medium gravel	149	166
Clay, smooth, gray	3	169
Pierre shale		-
Shale, gray	1	170

163-80-35aab Test hole 961

Formation Material	$\frac{\text{Thickness}}{(\text{feet})}$	$\frac{\text{Depth}}{(\text{feet})}$
Lake Souris deposits Topsoil, sandy, black		. 1
Clay, smooth, yellow	2	3
Clay, yellow; fine gravel Till and associated sand and gravel deposits		1 3 23
Clay, gray, and fine to medium gravel	119	142
Gravel, fine; shale pebbles	•• 3	145
Cannonball(?) member of the Fort Union formation (Fox Hills(?) sandstone	or	
Clay, gray-green	•• 2	147
Pierre shale Shale, gray	•• 3	150

163-80-35abb Test hole 943

Lake Souris deposits		
Topsoil, sandy, black	1	1
Clay, yellow; fine to medium gravel	21	22
Till and associated sand and gravel deposits		
Clay, gray; fine to medium gravel	38	60
Sand, coarse; and fine to medium gravel		
and shale pebbles	23	83
Clay, gray, and fine to medium gravel	69	152
Pierre shale		
Shale, gray	8	160

163-80-35bbb Test hole 942

Lake Souris deposits		
Topsoil, sandy, black	1	1
Clay, yellow; fine to medium gravel	18	19
Till and associated sand and gravel deposits		
Clay, gray, and fine to medium gravel	132	151
Gravel, fine; shale pebbles	1	152
Clay, gray, and fine to medium gravel	9	161
Pierre shale		
Shale, gray	9	170

163-80-36baa Test hole 945

Formation	Material	Thickness (feet)	Depth (feet)
Lake Souris	deposits Topsoil, black Clay, light-gray Clay, yellow, oxidized; fine to medium	1 1	1 2
mill and ac	gravel sociated sand and gravel deposits	25	27
	Clay, gray, and fine to medium gravel	104	131
Pierre shal	Shale, gray	9	140
	163-80-36bba Test hole 960	2	
Lake Souris	deposits Topsoil, sandy, black Clay, yellow, oxidized; fine to medium	1	1
ጥ 11 በ በ በ በ በ በ በ በ በ በ በ በ በ በ በ በ በ በ	gravel sociated sand and gravel deposits	37	38
da strata da constante a constante	Clay, gray, and fine to medium gravel Gravel, fine to medium Gravel, fine to medium, silty	44 6 8	82 88 96
Pierre shal	Clay, gray, and fine to medium gravel		119
LTCILG DWGT	Shale, gray	11	150
	163-80-36bbb Test hole 944		•
Lake Souris	deposits Topsoil, sandy, black Clay, yellow; fine gravel sociated sand and gravel deposits	1 42	1 43
Cannonball(Clay, gray, and fine to medium gravel, coarser at base?) member of the Fort Union formation or	. 99	142
	<pre>Ills(?) sandstone Sand, fine to medium, silty Clay, gray, and medium to coarse sand</pre>		145 149
Pierre shal	Shale, gray	12	161

REFERENCES

- Abbott, G. A., and Voedisch, F. W., 1938, The municipal ground-water supplies of North Dakota: North Dakota Geol. Survey Bull. 11.
- Akin, P. D., 1951, Ground water in the Mohall area, Bottineau and Renville counties, North Dakota: North Dakota Ground-Water Studies No. 17.

Brown, R. W., and Lemke, R. W., 1948, Newly discovered outcrops of the Cannonball formation in North Dakota: Science, v. 107.

Comly, H. H., 1945, Cyanosis in infants caused by nitrates in well water: Am. Med. Assoc. Jour., v. 129, no. 2, p. 112-116.

Dean, H. T., 1936, Chronic endemic dental fluorsis: Am. Med. Assoc. Jour., v. 107, no. 16, p. 1269-1272.

Fenneman, N. M., 1938, Physiography of eastern United States: New York, McGraw-Hill, 599 p.

Lemke, R. W., and others, Preliminary geologic quadrangle maps of parts of the Crosby-Mohall area: U. S. Geol. Survey open-file rept.

Meinzer, O. E., 1923, The occurrence of ground water in the United States, with a discussion of principles: U. S. Geol. Survey Water-Supply Paper 489.

Robinove, C. J., 1956, Geology and ground-water resources of the Hettinger area, Adams County, North Dakota: North Dakota Ground-Water Studies No. 24.

Silverman, L. B., 1949, Methemoglobinemia: Report of two cases and clinical review: Journal-Lancet, v. 69, p. 94-97, March.

Simpson, H. E., 1929, Geology and ground-water resources of North Dakota: U. S. Geol. Survey Water-Supply Paper 598.

Smith, Carol, 1954, Summary of the Sohio Petroleum Co.-John Nelson #1 oil-test well: North Dakota Geol. Survey Circ. 67.

Upham, Warren, 1896, The glacial Lake Agassiz: U. S. Geol. Survey Mon. 25.

- U. S. Public Health Service, 1946, Drinking water standards: Public Health Repts., v. 61, no. 11.
- U. S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U. S. Dept. Agriculture, Agriculture Handbook 60.
- U. S. Weather Bureau, 1954, Climatological data for North Dakota, annual summary, 1953: v. 63, no. 13, p. 174, 176.